CALCULUS

Early Transcendentals

SULLIVAN
MIRANDA

Calculus-What Is It?

Calculus is a part of mathematics that evolved much later than other subjects. Algebra, geometry, and trigonometry were developed in ancient times, but calculus as we know it did not appear until the seventeenth century.

The first evidence of calculus has its roots in ancient mathematics. For example, in his book, A History of π, Petr Beckmann explains that Greek mathematician Archimedes (287-212 BCE) "took the step from the concept of 'equal to' to the concept of 'arbitrarily close to' or 'as closely as desired'... and thus reached the threshold of the differential calculus, just as his method of squaring the parabola reached the threshold of the integral calculus."* But it was not until Sir Isaac Newton and Gottfried Wilhelm Leibniz, each working independently, expanded, organized, and applied these early ideas, that the subject we now know as calculus was born.

Although we attribute the birth of calculus to Newton and Leibniz, many other mathematicians, particularly those in the eighteenth and nineteenth centuries, contributed greatly to the body and rigor of calculus. You will encounter many of their names and contributions as you pursue your study of calculus.

But, what is calculus? Why is it given such notoriety?
The simple answer is: calculus models change. Since the world and most things in it are constantly changing, mathematics that explains change becomes immensely useful.

Calculus has two major branches, differential calculus and integral calculus. Let's take a peek at what calculus is by looking at two problems that prompted the development of calculus.

The Tangent Problem-The Basis of Differential Calculus

Suppose we want to find the slope of the line tangent to the graph of a function at some point $P=\left(x_{1}, y_{1}\right)$. See Figure 1(a). Since the tangent line necessarily contains the point P, it remains only to find the slope to identify the tangent line. Suppose we repeatedly zoom in on the graph of the function at the point P. See Figure 1(b). If we can zoom in close enough, then the graph of the function will look approximately linear, and we can choose a point Q, on the graph of the function different from the point P, and use the formula for slope.

(a)

Figure 1

(b)

Repeatedly zooming in on the point P is equivalent to choosing a point Q closer and closer to the point P. Notice that as we zoom in on P, the line connecting the points P and Q, called a secant line, begins to look more and more like the tangent line to the graph of the function at the point P. If the point Q can be made as close as we please to the point P, without equaling the point P, then the slope of the tangent line m_{tan} can be found. This formulation leads to differential calculus, the study of the derivative of a function.

The derivative gives us information about how a function changes at a given instant and can be used to solve problems involving velocity and acceleration; marginal cost and profit; and the rate of change of a chemical reaction. Derivatives are the subjects of Chapters 2 through 4.

The Area Problem-The Basis of Integral Calculus

If we want to find the area of a rectangle or the area of a circle, formulas are available. (see Figure 2). But what if the figure is curvy, but not circular as in Figure 3? How do we find this area?

Area $=\pi r^{2}$

Figure 2

No area formula

Figure 3
Calculus provides a way. Look at Figure 4(a). It shows the graph of $y=x^{2}$ from $x=0$ to $x=1$. Suppose we want to find the shaded area.

Figure 4
By subdividing the x-axis from 0 to 1 into small segments and drawing a rectangle of height x^{2} above each segment, as in Figure 4(b), we can find the area of each rectangle and add them together. This sum approximates the shaded area in Figure 4(a). The smaller we make the segments of the x-axis and the more rectangles we draw, the better the approximation becomes. See Figure 4(c). This formulation leads to integral calculus, and the study of the integral of a function.

Two Problems-One Subject?

At first, differential calculus (the tangent problem) and integral calculus (the area problem) appear to be different, so why call both of them calculus? The Fundamental Theorem of Calculus establishes that the derivative and the integral are related. In fact, one of Newton's teachers, Isaac Barrow, recognized that the tangent problem and the area problem are closely related, and that derivatives and integrals are inverses of each other. Both Newton and Leibniz formalized this relationship between derivatives and integrals in the Fundamental Theorem of Calculus.

[^0]1. $\frac{d}{d x} c=0, \quad c$ is a constant
2. $\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$
3. $\frac{d}{d x}(c u)=c \frac{d u}{d x}, \quad c$ a constant
4. $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
5. $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
6. $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}, \quad y=f(u), \quad u=g(x)$
7. $\frac{d}{d x} x^{a}=a x^{a-1}$
8. $\frac{d}{d x} \sin x=\cos x$
9. $\frac{d}{d x} \cos x=-\sin x$
10. $\frac{d}{d x} \tan x=\sec ^{2} x$
11. $\frac{d}{d x} \cot x=-\csc ^{2} x$
12. $\frac{d}{d x} \sec x=\sec x \tan x$
13. $\frac{d}{d x} \csc x=-\csc x \cot x$
14. $\frac{d}{d x} \ln x=\frac{1}{x}$
15. $\frac{d}{d x} e^{x}=e^{x}$
16. $\frac{d}{d x} a^{x}=a^{x} \ln a, \quad a>0, a \neq 1$
17. $\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}, \quad a>0, a \neq 1$
18. $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
19. $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
20. $\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}$
21. $\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}$
22. $\frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}}$
23. $\frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}$
24. $\frac{d}{d x} \sinh x=\cosh x$
25. $\frac{d}{d x} \cosh x=\sinh x$
26. $\frac{d}{d x} \tanh x=\operatorname{sech}^{2} x$
27. $\frac{d}{d x} \operatorname{coth} x=-\operatorname{csch}^{2} x$
28. $\frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tanh x$
29. $\frac{d}{d x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x$
30. $\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{1+x^{2}}}$
31. $\frac{d}{d x} \cosh ^{-1} x=\frac{1}{\sqrt{x^{2}-1}}$
32. $\frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}}$

TABLE OF INTEGRALS

General Formulas

1. $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$
2. $\int k f(x) d x=k \int f(x) d x, k$ a constant
3. $\int u d v=u v-\int v d u$

Essential Integrals

1. $\int x^{a} d x=\frac{x^{a+1}}{a+1}+C, \quad a \neq-1$
2. $\int \frac{1}{x} d x=\ln |x|+C$
3. $\int e^{x} d x=e^{x}+C$
4. $\int \sin x d x=-\cos x+C$
5. $\int \sec x d x=\ln |\sec x+\tan x|+C$
6. $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C$
7. $\int \cot x d x=\ln |\sin x|+C$
8. $\int \csc x \cot x d x=-\csc x+C$
9. $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{x}{a}+C, \quad a>0$
10. $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C$
11. $\int \cos x d x=\sin x+C$
12. $\int \sec ^{2} x d x=\tan x+C$
13. $\int \csc x d x=\ln |\csc x-\cot x|+C$
14. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C, \quad a>0$
15. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C, \quad a>0, \quad a \neq 1$
16. $\int \tan x d x=\ln |\sec x|+C$
17. $\int \sec x \tan x d x=\sec x+C$
18. $\int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+C$
19. $\int \csc ^{2} x d x=-\cot x+C$
20. $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C, \quad a>0$

Useful Integrals

21. $\int \sinh x d x=\cosh x+C$
22. $\int \cosh x d x=\sinh x+C$
23. $\int \operatorname{sech}^{2} x d x=\tanh x+C$
24. $\int \operatorname{csch}^{2} x d x=-\operatorname{coth} x+C$
25. $\int \operatorname{sech} x \tanh x d x=-\operatorname{sech} x+C$
26. $\int \operatorname{csch} x \operatorname{coth} x d x=-\operatorname{csch} x+C$
27. $\int \frac{d x}{a+b x}=\frac{1}{b} \ln |a+b x|+C$
28. $\int \frac{x d x}{a+b x}=\frac{1}{b^{2}}(a+b x-a \ln |a+b x|)+C$
29. $\int \frac{x d x}{(a+b x)^{2}}=\frac{a}{b^{2}(a+b x)}+\frac{1}{b^{2}} \ln |a+b x|+C$
30. $\int \frac{x^{2} d x}{(a+b x)^{2}}=\frac{1}{b^{3}}\left(a+b x-\frac{a^{2}}{a+b x}-2 a \ln |a+b x|\right)+C$
31. $\int \frac{d x}{x(a+b x)^{2}}=\frac{1}{a(a+b x)}-\frac{1}{a^{2}} \ln \left|\frac{a+b x}{x}\right|+C$
32. $\int \frac{d x}{x^{2}(a+b x)}=-\frac{1}{a x}+\frac{b}{a^{2}} \ln \left|\frac{a+b x}{x}\right|+C$
33. $\int x(a+b x)^{n} d x=\frac{(a+b x)^{n+1}}{b^{2}}\left(\frac{a+b x}{n+2}-\frac{a}{n+1}\right)+C, \quad n \neq-1,-2$
34. $\int \frac{x d x}{(a+b x)(c+d x)}=\frac{1}{b c-a d}\left(-\frac{a}{b} \ln |a+b x|+\frac{c}{d} \ln |c+d x|\right)+C, \quad b c-a d \neq 0$
35. $\int \frac{x d x}{(a+b x)^{2}(c+d x)}=\frac{1}{b c-a d}\left[\frac{a}{b(a+b x)}+\frac{c}{b c-a d} \ln \left|\frac{a+b x}{c+d x}\right|\right]+C, \quad b c-a d \neq 0$
36. $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \left|\frac{x+a}{x-a}\right|+C$
37. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C$
38. $\int \frac{d x}{\left(a^{2} \pm x^{2}\right)^{n}}=\frac{1}{2(n-1) a^{2}}\left[\frac{x}{\left(a^{2} \pm x^{2}\right)^{n-1}}+(2 n-3) \int \frac{d x}{\left(a^{2} \pm x^{2}\right)^{n-1}}\right], \quad n \neq 1$
39. $\int \frac{d x}{\left(x^{2}-a^{2}\right)^{n}}=\frac{1}{2(n-1) a^{2}}\left[-\frac{x}{\left(x^{2}-a^{2}\right)^{n-1}}-(2 n-3) \int \frac{d x}{\left(x^{2}-a^{2}\right)^{n-1}}\right], \quad n \neq 1$
40. $\int x \sqrt{a+b x} d x=\frac{2}{15 b^{2}}(3 b x-2 a)(a+b x)^{3 / 2}+C$
41. $\int x^{n} \sqrt{a+b x} d x=\frac{2}{b(2 n+3)}\left[x^{n}(a+b x)^{3 / 2}-n a \int x^{n-1} \sqrt{a+b x} d x\right]$
42. $\int \frac{x d x}{\sqrt{a+b x}}=\frac{2}{3 b^{2}}(b x-2 a) \sqrt{a+b x}+C$
43. $\int \frac{x^{2} d x}{\sqrt{a+b x}}=\frac{2}{15 b^{2}}\left(8 a^{2}-4 a b x+3 b^{2} x^{2}\right) \sqrt{a+b x}+C$
44. $\int \frac{x^{n} d x}{\sqrt{a+b x}}=\frac{2 x^{n} \sqrt{a+b x}}{b(2 n+1)}-\frac{2 n a}{b(2 n+1)} \int \frac{x^{n-1} d x}{\sqrt{a+b x}}$
45. $\int \frac{d x}{x \sqrt{a+b x}}= \begin{cases}\frac{1}{\sqrt{a}} \ln \left|\frac{\sqrt{a+b x}-\sqrt{a}}{\sqrt{a+b x}+\sqrt{a}}\right|+C, & a>0 \\ \frac{2}{\sqrt{-a}} \tan ^{-1} \sqrt{\frac{a+b x}{-a}}+C, \quad a<0\end{cases}$
46. $\int \frac{d x}{x^{n} \sqrt{a+b x}}=-\frac{\sqrt{a+b x}}{a(n-1) x^{n-1}}-\frac{b(2 n-3)}{2 a(n-1)} \int \frac{d x}{x^{n-1} \sqrt{a+b x}}$
47. $\int \frac{\sqrt{a+b x}}{x} d x=2 \sqrt{a+b x}+a \int \frac{d x}{x \sqrt{a+b x}}$
48. $\int \frac{\sqrt{a+b x}}{x^{2}} d x=-\frac{\sqrt{a+b x}}{x}+\frac{b}{2} \int \frac{d x}{x \sqrt{a+b x}}$

Integrals Containing $\sqrt{x^{2} \pm a^{2}}$

49. $\int \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \pm \frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
50. $\int x \sqrt{x^{2} \pm a^{2}} d x=\frac{1}{3}\left(x^{2} \pm a^{2}\right)^{3 / 2}+C$
51. $\int x^{2} \sqrt{x^{2} \pm a^{2}} d x=\frac{x}{8}\left(2 x^{2} \pm a^{2}\right) \sqrt{x^{2} \pm a^{2}}-\frac{a^{4}}{8} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
52. $\int \frac{\sqrt{x^{2}+a^{2}}}{x} d x=\sqrt{x^{2}+a^{2}}-a \ln \left|\frac{a+\sqrt{x^{2}+a^{2}}}{x}\right|+C$
53. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x=\sqrt{x^{2}-a^{2}}-a \sec ^{-1} \frac{x}{a}+C$
54. $\int \frac{\sqrt{x^{2} \pm a^{2}}}{x^{2}} d x=-\frac{\sqrt{x^{2} \pm a^{2}}}{x}+\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
55. $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
56. $\int \frac{x^{2} d x}{\sqrt{x^{2} \pm a^{2}}}=\frac{x}{2} \sqrt{x^{2} \pm a^{2}} \pm \frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
57. $\int \frac{d x}{x \sqrt{x^{2}+a^{2}}}=-\frac{1}{a} \ln \left|\frac{a+\sqrt{x^{2}+a^{2}}}{x}\right|+C$
58. $\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{x}{a}+C$
59. $\int \frac{d x}{x^{2} \sqrt{x^{2} \pm a^{2}}}=\mp \frac{\sqrt{x^{2} \pm a^{2}}}{a^{2} x}+C$
60. $\int\left(x^{2} \pm a^{2}\right)^{3 / 2} d x=\frac{x}{8}\left(2 x^{2} \pm 5 a^{2}\right) \sqrt{x^{2} \pm a^{2}}+\frac{3 a^{4}}{8} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C$
61. $\int \frac{d x}{\left(x^{2} \pm a^{2}\right)^{3 / 2}}= \pm \frac{x}{a^{2} \sqrt{x^{2} \pm a^{2}}}+C$
62. $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
63. $\int x^{2} \sqrt{a^{2}-x^{2}} d x=\frac{x}{8}\left(2 x^{2}-a^{2}\right) \sqrt{a^{2}-x^{2}}+\frac{a^{4}}{8} \sin ^{-1} \frac{x}{a}+C$
64. $\int \frac{\sqrt{a^{2}-x^{2}}}{x} d x=\sqrt{a^{2}-x^{2}}-a \ln \left|\frac{a+\sqrt{a^{2}-x^{2}}}{x}\right|+C$
65. $\int \frac{\sqrt{a^{2}-x^{2}}}{x^{2}} d x=-\frac{\sqrt{a^{2}-x^{2}}}{x}-\sin ^{-1} \frac{x}{a}+C$
66. $\int \frac{x^{2}}{\sqrt{a^{2}-x^{2}}} d x=-\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
67. $\int \frac{d x}{x \sqrt{a^{2}-x^{2}}}=-\frac{1}{a} \ln \left|\frac{a+\sqrt{a^{2}-x^{2}}}{x}\right|+C$
68. $\int \frac{d x}{x^{2} \sqrt{a^{2}-x^{2}}}=-\frac{\sqrt{a^{2}-x^{2}}}{a^{2} x}+C$
69. $\int\left(a^{2}-x^{2}\right)^{3 / 2} d x=\frac{x}{4}\left(a^{2}-x^{2}\right)^{3 / 2}+\frac{3 a^{2} x}{8} \sqrt{a^{2}-x^{2}}+\frac{3 a^{4}}{8} \sin ^{-1} \frac{x}{a}+C$
70. $\int \frac{d x}{\left(a^{2}-x^{2}\right)^{3 / 2}}=\frac{x}{a^{2} \sqrt{a^{2}-x^{2}}}+C$

Integrals Containing $\sqrt{2 a x-x^{2}}$
71. $\int \sqrt{2 a x-x^{2}} d x=\frac{x-a}{2} \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \cos ^{-1}\left(\frac{a-x}{a}\right)+C$
72. $\int x \sqrt{2 a x-x^{2}} d x=\frac{2 x^{2}-a x-3 a^{2}}{6} \sqrt{2 a x-x^{2}}+\frac{a^{3}}{2} \cos ^{-1}\left(\frac{a-x}{a}\right)+C$
73. $\int \frac{\sqrt{2 a x-x^{2}}}{x} d x=\sqrt{2 a x-x^{2}}+a \cos ^{-1}\left(\frac{a-x}{a}\right)+C$
74. $\int \frac{\sqrt{2 a x-x^{2}}}{x^{2}} d x=-\frac{2 \sqrt{2 a x-x^{2}}}{x}-\cos ^{-1}\left(\frac{a-x}{a}\right)+C$
75. $\int \frac{d x}{\sqrt{2 a x-x^{2}}}=\cos ^{-1}\left(\frac{a-x}{a}\right)+C$
76. $\int \frac{x d x}{\sqrt{2 a x-x^{2}}}=-\sqrt{2 a x-x^{2}}+a \cos ^{-1}\left(\frac{a-x}{a}\right)+C$
77. $\int \frac{x^{2} d x}{\sqrt{2 a x-x^{2}}}=-\frac{x+3 a}{2} \sqrt{2 a x-x^{2}}+\frac{3 a^{2}}{2} \cos ^{-1}\left(\frac{a-x}{a}\right)+C$
78. $\int \frac{d x}{x \sqrt{2 a x-x^{2}}}=-\frac{\sqrt{2 a x-x^{2}}}{a x}+C$
79. $\int \frac{\sqrt{2 a x-x^{2}}}{x^{n}} d x=\frac{\left(2 a x-x^{2}\right)^{3 / 2}}{(3-2 n) a x^{n}}+\frac{n-3}{(2 n-3) a} \int \frac{\sqrt{2 a x-x^{2}}}{x^{n-1}} d x, \quad n \neq \frac{3}{2}$
80. $\int \frac{x^{n} d x}{\sqrt{2 a x-x^{2}}}=-\frac{x^{n-1} \sqrt{2 a x-x^{2}}}{n}+\frac{a(2 n-1)}{n} \int \frac{x^{n-1}}{\sqrt{2 a x-x^{2}}} d x$
81. $\int \frac{d x}{x^{n} \sqrt{2 a x-x^{2}}}=\frac{\sqrt{2 a x-x^{2}}}{a(1-2 n) x^{n}}+\frac{n-1}{(2 n-1) a} \int \frac{d x}{x^{n-1} \sqrt{2 a x-x^{2}}}$
82. $\int \frac{d x}{\left(2 a x-x^{2}\right)^{3 / 2}}=\frac{x-a}{a^{2} \sqrt{2 a x-x^{2}}}+C$
83. $\int \frac{x d x}{\left(2 a x-x^{2}\right)^{3 / 2}}=\frac{x}{a \sqrt{2 a x-x^{2}}}+C$
84. $\int \sin ^{2} x d x=\frac{x}{2}-\frac{\sin 2 x}{4}+C$
86. $\int \tan ^{2} x d x=\tan x-x+C$
88. $\int \sec ^{3} x d x=\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C$
90. $\int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x$
92. $\int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x$
94. $\int \sec ^{n} x d x=\frac{1}{n-1} \tan x \sec ^{n-2} x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x$
96. $\int \sin m x \sin n x d x=-\frac{\sin (m+n) x}{2(m+n)}+\frac{\sin (m-n) x}{2(m-n)}+C, \quad m^{2} \neq n^{2}$
98. $\int \sin m x \cos n x d x=-\frac{\cos (m+n) x}{2(m+n)}-\frac{\cos (m-n) x}{2(m-n)}+C, \quad m^{2} \neq n^{2}$
100. $\int x \cos x d x=\cos x+x \sin x+C$
102. $\int x^{2} \cos x d x=2 x \cos x+\left(x^{2}-2\right) \sin x+C$
104. $\int x^{n} \cos x d x=x^{n} \sin x-n \int x^{n-1} \sin x d x$
105. (a) $\int \sin ^{m} x \cos ^{n} x d x=-\frac{\sin ^{m-1} x \cos ^{n+1} x}{m+n}+\frac{m-1}{m+n} \int \sin ^{m-2} x \cos ^{n} x d x$
(b) $\int \sin ^{m} x \cos ^{n} x d x=-\frac{\sin ^{m+1} x \cos ^{n-1} x}{m+n}+\frac{n-1}{m+n} \int \sin ^{m} x \cos ^{n-2} x d x$
(if $m=-n$ use formula 92 or 93 .)
85. $\int \cos ^{2} x d x=\frac{x}{2}+\frac{\sin 2 x}{4}+C$
87. $\int \cot ^{2} x d x=-\cot x-x+C$
89. $\int \csc ^{3} x d x=-\frac{1}{2} \csc x \cot x+\frac{1}{2} \ln |\csc x-\cot x|+C$
91. $\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x$
93. $\int \cot ^{n} x d x=\frac{-1}{n-1} \cot ^{n-1} x-\int \cot ^{n-2} x d x$
95. $\int \csc ^{n} x d x=\frac{-1}{n-1} \cot x \csc ^{n-2} x+\frac{n-2}{n-1} \int \csc ^{n-2} x d x$
97. $\int \cos m x \cos n x d x=\frac{\sin (m+n) x}{2(m+n)}+\frac{\sin (m-n) x}{2(m-n)}+C, m^{2} \neq n^{2}$
99. $\int x \sin x d x=\sin x-x \cos x+C$
101. $\int x^{2} \sin x d x=2 x \sin x+\left(2-x^{2}\right) \cos x+C$
103. $\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$
106. $\int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}}+C$
107. $\int \cos ^{-1} x d x=x \cos ^{-1} x-\sqrt{1-x^{2}}+C$
108. $\int \tan ^{-1} x d x=x \tan ^{-1} x-\frac{1}{2} \ln \left(1+x^{2}\right)+C$
109. $\int x \sin ^{-1} x d x=\frac{2 x^{2}-1}{4} \sin ^{-1} x+\frac{x \sqrt{1-x^{2}}}{4}+C$
110. $\int x \cos ^{-1} x d x=\frac{2 x^{2}-1}{4} \cos ^{-1} x-\frac{x \sqrt{1-x^{2}}}{4}+C$
111. $\int x \tan ^{-1} x d x=\frac{x^{2}+1}{2} \tan ^{-1} x-\frac{x}{2}+C$
112. $\int x^{n} \sin ^{-1} x d x=\frac{1}{n+1}\left(x^{n+1} \sin ^{-1} x-\int \frac{x^{n+1} d x}{\sqrt{1-x^{2}}}\right), n \neq-1$
113. $\int x^{n} \cos ^{-1} x d x=\frac{1}{n+1}\left(x^{n+1} \cos ^{-1} x+\int \frac{x^{n+1} d x}{\sqrt{1-x^{2}}}\right), \quad n \neq-1$
114. $\int x^{n} \tan ^{-1} x d x=\frac{1}{n+1}\left(x^{n+1} \tan ^{-1} x-\int \frac{x^{n+1} d x}{1+x^{2}}\right), \quad n \neq-1$

Integrals Containing Exponential and Logarithmic Functions

115. $\int x e^{a x} d x=\frac{1}{a^{2}}(a x-1) e^{a x}+C$
116. $\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x$
117. $\int \frac{e^{x}}{x^{n}} d x=-\frac{e^{x}}{(n-1) x^{n-1}}+\frac{1}{n-1} \int \frac{e^{x}}{x^{n-1}} d x$
118. $\int \ln x d x=x \ln x-x+C$
119. $\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$
120. $\int x^{n} \ln x d x=\left(\frac{x^{n+1}}{n+1}\right)\left(\ln x-\frac{1}{n+1}\right)+C$
121. $\int \frac{(\ln x)^{n}}{x} d x=\frac{(\ln x)^{n+1}}{n+1}+C, \quad n \neq-1$
122. $\int \frac{d x}{x \ln x}=\ln |\ln x|+C$
123. $\int x^{m}(\ln x)^{n} d x=\frac{x^{m+1}(\ln x)^{n}}{m+1}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x$
124. $\int \frac{x^{m}}{(\ln x)^{n}} d x=-\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}}+\frac{m+1}{n-1} \int \frac{x^{m}}{(\ln x)^{n-1}} d x$
125. $\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin b x-b \cos b x)+C$
126. $\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \cos b x+b \sin b x)+C$

Integrals Containing Hyperbolic Functions

127. $\int \sinh x d x=\cosh x+C$
128. $\int \cosh x d x=\sinh x+C$
129. $\int \tanh x d x=\ln \cosh x+C$
130. $\int \operatorname{coth} x d x=\ln |\sinh x|+C$
131. $\int \operatorname{sech} x d x=\tan ^{-1}(\sinh x)+C$
132. $\int \operatorname{csch} x d x=\ln \left|\tanh \frac{x}{2}\right|+C$
133. $\int \operatorname{sech}^{2} x d x=\tanh x+C$
134. $\int \operatorname{csch}^{2} x d x=-\operatorname{coth} x+C$
135. $\int \operatorname{sech} x \tanh x d x=-\operatorname{sech} x+C$
136. $\int \operatorname{csch} x \operatorname{coth} x d x=-\operatorname{csch} x+C$
137. $\int \sinh ^{2} x d x=\frac{\sinh 2 x}{4}-\frac{x}{2}+C$
138. $\int \cosh ^{2} x d x=\frac{\sinh 2 x}{4}+\frac{x}{2}+C$
139. $\int \tanh ^{2} x d x=x-\tanh x+C$
140. $\int \operatorname{coth}^{2} x d x=x-\operatorname{coth} x+C$
141. $\int x \sinh x d x=x \cosh x-\sinh x+C$
142. $\int x \cosh x d x=x \sinh x-\cosh x+C$
143. $\int x^{n} \sinh x d x=x^{n} \cosh x-n \int x^{n-1} \cosh x d x$
144. $\int x^{n} \cosh x d x=x^{n} \sinh x-n \int x^{n-1} \sinh x d x$

CALCULUS

 Early TranscendentalsMICHAEL SULLIVAN
Chicago State University

KATHLEEN MIRANDA
State University of New York, Old Westbury

Senior Publisher: Ruth Baruth
Executive Acquisitions Editor: Terri Ward
Senior Development Editor: Andrew Sylvester
Development Editor: Tony Palermino
Associate Editor: Jorge Amaral
Editorial Assistant: Victoria Garvey
Market Development: Steven Rigolosi
Marketing Manager: Steve Thomas
Marketing Assistant: Samantha Zimbler
Senior Media Editor: Laura Judge
Associate Media Editor: Catriona Kaplan
Associate Media Editor: Courtney Elezovic
Assistant Media Editor: Liam Ferguson
Photo Editor: Christine Buese
Photo Researcher: Dena Betz
Art Director: Diana Blume
Project Editor: Robert Errera
Production Manager: Julia DeRosa
Illustration Coordinator: Janice Donnola
Illustrations: Network Graphics
Composition: Cenveo, Inc.
Printer: RR Donnelley

Library of Congress Control Number: 2013956890
ISBN-13: 978-1-4641-5276-4
ISBN-10: 1-4641-5276-4
©2014 by W.H. Freeman and Company
All rights reserved.

Printed in the United States of America
First printing

W. H. Freeman and Company, 41 Madison Avenue, New York, NY 10010

Houndmills, Basingstoke RG21 6XS, England
www.whfreeman.com

Contents | Calculus

	Preface	vi
	Applications Index	xv
\underline{P}	Preparing for Calculus	1
	P. 1 Functions and Their Graphs	2
	P. 2 Library of Functions; Mathematical Modeling	14
	P. 3 Operations on Functions; Graphing Techniques	24
	P. 4 Inverse Functions	32
	P. 5 Exponential and Logarithmic Functions	38
	P. 6 Trigonometric Functions	49
	P. 7 Inverse Trigonometric Functions	58
	P. 8 Technology Used in Calculus	64
1	Limits and Continuity	68
	1.1 Limits of Functions Using Numerical and Graphical Techniques	69
	1.2 Limits of Functions Using Properties of Limits	81
	1.3 Continuity	93
	1.4 Limits and Continuity of Trigonometric, Exponential, and Logarithmic Functions	106
	1.5 Infinite Limits; Limits at Infinity; Asymptotes	117
	1.6 The ε - δ Definition of Limit	130
	Chapter Review	139
	Chapter Project: Pollution in Clear Lake	143
2	The Derivative	144
	2.1 Rates of Change and the Derivative	145
	2.2 The Derivative as a Function	154
	2.3 The Derivative of a Polynomial Function; The Derivative of $y=e^{x}$	163
	2.4 Differentiating the Product and the Quotient of Two Functions; Higher-Order Derivatives	173
	2.5 The Derivative of the Trigonometric Functions	185
	Chapter Review	192
	Chapter Project: The Lunar Module	195
3	More About Derivatives	197
	3.1 The Chain Rule	198
	3.2 Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions	209
	3.3 Derivatives of Logarithmic Functions	222
	3.4 Differentials; Linear Approximations; Newton's Method	230
	3.5 Taylor Polynomials	240
	3.6 Hyperbolic Functions	243
	Chapter Review	250
	Chapter Project: World Population	253
	Applications of the Derivative	254
	4.1 Related Rates	255
	4.2 Maximum and Minimum Values; Critical Numbers	263
	4.3 The Mean Value Theorem	275
	4.4 Local Extrema and Concavity	284
	4.5 Indeterminate Forms and L'Hôpital's Rule	298

Preface vi

| P \quad Preparing for Calculus | 1 |
| :--- | :--- | :--- |
| P. $1 \quad$ Functions and Their Graphs | 2 |

.2 Library of functions, Mathematical Modeling24
P. 4 Inverse Functions 32
Exponentialand Logarthmic Functions49
P. 7 Inverse Trigonometric Functions 581 Limits and Continuity68
1.1 Limits of Functions Using Numerical and Graphical Techniques 6993
1.3 Continuity
1.4 Limits and Continuity of Trigonometric,Exponential, and Logarithmic Functions106
1.5 Infinite Limits; Limits at Infinity; Asymptotes130
Chapter Review 1392 The Derivative144
2.2 The Derivative as a Function 154
2.3 The Derivative of a Polynomial Function;The Derivative of $y=e^{x}$163
2.4 Differentiating the Product and the Quotient of Two Functions; Higher-Order Derivatives185
Chapter Review 1923 More About Derivatives197
3.1 The Chain Rule 983.3 Derivatives of Logarithmic Functions222
3.4 Differentials; Linear Approximations; Newton's Method 230243
Chapter Review 2504 Applications of the Derivative254
Related Rates263
.3. The Mean Value Theorem284
4.5 Indeterminate Forms and L'Hôpital's Rule 298
4.6 Using Calculus to Graph Functions 308
4.7 Optimization 318
4.8 Antiderivatives; Differential Equations 328
Chapter Review 338
Chapter Project: The U.S. Economy 342
5 The Integral 343
5.1 Area 344
5.2 The Definite Integral 353
5.3 The Fundamental Theorem of Calculus 362
5.4 Properties of the Definite Integral 369
5.5 The Indefinite Integral; Growth and Decay Models 379
5.6 Method of Substitution; Newton's Law of Cooling 387
Chapter Review 400
Chapter Project: Managing the Klamath River 403
6 Applications of the Integral 404
6.1 Area Between Graphs 405
6.2 Volume of a Solid of Revolution: Disks and Washers 413
6.3 Volume of a Solid of Revolution: Cylindrical Shells 424
6.4 Volume of a Solid: Slicing Method 433
6.5 Arc Length 438
6.6 Work 444
6.7 Hydrostatic Pressure and Force 453
6.8 Center of Mass; Centroid; The Pappus Theorem 458
Chapter Review 467
Chapter Project: Determining the Amount of Concrete Needed for a Cooling Tower 469
7 Techniques of Integration 471
7.1 Integration by Parts 472
7.2 Integrals Containing Trigonometric Functions 480
7.3 Integration Using Trigonometric Substitution: Integrands Containing $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}+a^{2}}$, or $\sqrt{x^{2}-a^{2}}$,$a>0$488
7.4 Substitution: Integrands Containing $a x^{2}+b x+c$ 496
7.5 Integration of Rational Functions Using Partial Fractions 499
7.6 Integration Using Numerical Techniques 508
7.7 Integration Using Tables and Computer Algebra Systems 520
7.8 Improper Integrals 523
Chapter Review 533
Chapter Project: The Birds of Rügen Island 535
8 Infinite Series 537
8.1 Sequences 538
8.2 Infinite Series 553
8.3 Properties of Series; the Integral Test 566
8.4 Comparison Tests 575
8.5 Alternating Series; Absolute Convergence 582
8.6 Ratio Test; Root Test 591
8.7 Summary of Tests 596
8.8 Power Series 600
8.9 Taylor Series; Maclaurin Series 611
8.10 Approximations Using Taylor/Maclaurin Expansions 623
Chapter Review 630
Chapter Project: How Calculators Calculate 634
9 Parametric Equations; Polar Equations 636
9.1 Parametric Equations 637
9.2 Tangent Lines; Arc Length 647
9.3 Surface Area of a Solid of Revolution 656
9.4 Polar Coordinates 661
9.5 Polar Equations; Parametric Equations of Polar Equations; Arc Length of Polar Equations 670
9.6 Area in Polar Coordinates 678
9.7 The Polar Equation of a Conic 684
Chapter Review 690
Chapter Project: Polar Graphs and Microphones 692
10 Vectors; Lines, Planes, and Quadric Surfaces in Space 694
10.1 Rectangular Coordinates in Space 695
10.2 Introduction to Vectors 699
10.3 Vectors in the Plane and in Space 703
10.4 The Dot Product 715
10.5 The Cross Product 724
10.6 Equations of Lines and Planes in Space 733
10.7 Quadric Surfaces 744
Chapter Review 752
Chapter Project: The Hall Effect 755
11 Vector Functions 757
11.1 Vector Functions and Their Derivatives 758
11.2 Unit Tangent and Principal Unit Normal Vectors; Arc Length 767
11.3 Arc Length as Parameter; Curvature 774
11.4 Motion Along a Curve 785
11.5 Integrals of Vector Functions; Projectile Motion 796
11.6 Application: Kepler's Laws of Planetary Motion 801
Chapter Review 805
Chapter Project: How to Design a Safe Road 807
12 Functions of Several Variables 809
12.1 Functions of Two or More Variables and Their Graphs 810
12.2 Limits and Continuity 819
12.3 Partial Derivatives 829
12.4 Differentiability and the Differential 840
12.5 Chain Rules 849
Chapter Review 858
Chapter Project: Searching for Exoplanets 861
13 Directional Derivatives, Gradients, and Extrema 862
13.1 Directional Derivatives; Gradients 863
13.2 Tangent Planes 875
13.3 Extrema of Functions of Two Variables 879
13.4 Lagrange Multipliers 891
Chapter Review 899
Chapter Project: Measuring Ice Thickness on Crystal Lake 901
14 Multiple Integrals 903
14.1 The Double Integral over a Rectangular Region 904
14.2 The Double Integral over Nonrectangular Regions 911
14.3 Double Integrals Using Polar Coordinates 923
14.4 Center of Mass; Moment of Inertia 929
14.5 Surface Area 936
14.6 The Triple Integral 941
14.7 Triple Integrals Using Cylindrical Coordinates 950
14.8 Triple Integrals Using Spherical Coordinates 956
14.9 Change of Variables Using Jacobians 962
Chapter Review 968
Chapter Project: The Mass of Stars 971
15 Vector Calculus 973
15.1 Vector Fields 974
15.2 Line Integrals 977
15.3 Fundamental Theorem of Line Integrals 989
15.4 An Application of Line Integrals: Work 1002
15.5 Green's Theorem 1008
15.6 Parametric Surfaces 1016
15.7 Surface and Flux Integrals 1027
15.8 The Divergence Theorem 1037
15.9 Stokes' Theorem 1045
Chapter Review 1053
Chapter Project: Modeling a Tornado 1056
16 Differential Equations 1058
16.1 Classification of Ordinary Differential Equations 1059
16.2 Separation of Variables in First-Order Differential Equations 1062
16.3 Exact Differential Equations 1072
16.4 First-Order Linear Differential Equations; Bernoulli Differential Equations 1077
16.5 Power Series Methods 1089
Chapter Review 1094
Chapter Project: The Melting Arctic Ice Cap 1096
APPENDIX A Precalculus Used in Calculus A-1
A. 1 Algebra Used in Calculus A-1
A. 2 Geometry Used in Calculus A-11
A. 3 Analytic Geometry Used in Calculus A-16
A. 4 Trigonometry Used in Calculus A-25
A. 5 Sequences; Summation Notation; the Binomial Theorem A-38
APPENDIX B Theorems and Proofs B-1
B. 1 Limit Theorems and Proofs B-1
B. 2 Theorems and Proofs Involving Inverse Functions B-3
B. 3 Derivative Theorems and Proofs B-4
B. 4 Integral Theorems and Proofs B-8
B. 5 A Bounded Monotonic Sequence Converges B-11
B. 6 Taylor's Formula with Remainder B-12
Answers AN-1
Photo Credits PC-1
Index IN-1

About the Authors

Michael Sullivan

Michael Sullivan, Emeritus Professor of Mathematics at Chicago State University, received a PhD in mathematics from the Illinois Institute of Technology. Before retiring, Mike taught at Chicago State for 35 years, where he honed an approach to teaching and writing that forms the foundation for his textbooks. Mike has been writing for over 35 years and currently has 15 books in print. His books have been awarded both Texty and McGuffey awards from TAA.

Mike is a member of the American Mathematical Association of Two Year Colleges, the American Mathematical Society, the Mathematical Association of America, and the Text and Academic Authors Association (TAA), and has received the TAA Lifetime Achievement Award in 2007. His influence in the field of mathematics extends to his four children: Kathleen, who teaches college mathematics; Michael III, who also teaches college mathematics, and who is his coauthor on two precalculus series; Dan, who is a sales director for a college textbook publishing company; and Colleen, who teaches middle-school and secondary school mathematics. Twelve grandchildren round out the family.

Mike would like to dedicate this text to his four children, 12 grandchildren, and future generations.

Kathleen Miranda

Kathleen Miranda, Ed.D. from St. John's University, is an Emeritus Associate Professor of the State University of New York (SUNY) where she taught for 25 years. Kathleen is a recipient of the prestigious New York State Chancellor's Award for Excellence in Teaching, and particularly enjoys teaching mathematics to underprepared and fearful students. In addition to her extensive classroom experience, Kathleen has worked as accuracy reviewer and solutions author on several mathematics textbooks, including Michael Sullivan's Brief Calculus and Finite Mathematics. Kathleen's goal is to help students unlock the complexities of calculus and appreciate its many applications.

Kathleen has four children: Edward, a plastic surgeon in San Francisco; James, an emergency medicine physician in Philadelphia; Kathleen, a chemical engineer working on vaccines; and Michael, a management consultant specializing in corporate strategy.

Kathleen would like to dedicate this text to her children and grandchildren.

Preface

The challenges facing instructors of calculus are daunting. Diversity among students, both in their mathematical preparedness for learning calculus and in their ultimate educational and career goals, is vast and growing. There is just not enough classroom time to teach every topic in the syllabus, to answer every student's questions, or to delve into the rich examples and applications that showcase the beauty and utility of calculus. As mathematics instructors we share these frustrations with you. As authors our goal is to create a student-oriented textbook that supports your teaching philosophy and promotes student success and confidence.

Promoting Student Success Is the Central Theme

Our goal is to write a mathematically precise calculus book that embraces proven pedagogical features to increase both student and instructor success. Many of these features are structural, but there are also many less obvious, intrinsic features embedded in the text.

- The text is written to be read by students. The language is simple, clear, and consistent. Definitions are simply stated and consistently used. Theorems are given names where appropriate. Numbering of definitions, equations, and theorems is kept to a minimum.
The careful use of color throughout the text brings attention to important statements such as definitions and theorems. Important formulas are boxed, and procedures and summaries are called out so that a student can quickly look back and review the main points of the section.
- The text is written to prepare students. Whether students have educational goals that end in the social sciences, in the life and/or physical sciences, in engineering, or with a PhD in mathematics, the text provides ample practice, applications, and the mathematical precision and rigor required to prepare students to pursue their goals.
- The text is written to be mastered by students. Carefully used pedagogical features are found throughout the text. These features provide structure and form a carefully crafted learning system that helps students get the most out of their study. From our experience, students who use the features are more successful in calculus.

Pedagogical Features Promote Student Success

Just In Time Review Students forget; they often do not make connections. Instructors lament, "The students are not prepared!" So, throughout the text there are margin notes labeled NEED TO REVIEW? followed by a topic and page references. The NEED TO REVIEW? reference points to the discussion of a concept used in the current presentation.
notation is discussed in Appendix A.5, pp. A- 38 to A-43.
The sum s_{n} of the areas of the n rectangles approximates the area A. That is,

$$
A \approx s_{n}=f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{i}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

RECALL margin notes provide a quick refresher of key results that are being used in theorems, definitions, and examples.

RECALL $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

> Using summation properties, we get

$$
S_{n}=\sum_{i=1}^{n} \frac{300}{n^{2}} i=\frac{300}{n^{2}} \sum_{i=1}^{n} i=\frac{300}{n^{2}} \frac{n(n+1)}{2}=150\left(\frac{n+1}{n}\right)=150\left(1+\frac{1}{n}\right)
$$

Additional margin notes are included throughout the text to help students understand and engage with the concepts. IN WORDS notes translate complex formulas, theorems, proofs, rules, and definitions using plain language that provide students with an alternate way to learn the concepts.

$$
\begin{align*}
& \text { IN WORDS The average value } \\
& \bar{y}=\frac{1}{b-a} \int_{a}^{b} f(x) d x \text { of a } \\
& \text { function } f \text { equals the value } f(u) \text { in the } \tag{8}\\
& \text { Mean Value Theorem for Integrals. }
\end{align*}
$$

DEFINITION Average Value of a Function over an Interval
Let f be a function that is continuous on the closed interval $[a, b]$. The average value $\overline{\boldsymbol{y}}$ of \boldsymbol{f} over $[a, b]$ is

$$
\bar{y}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

CAUTION In writing an indefinite

 integral $\int f(x) d x$, remember to include the " $d x$."

CAUTIONS and NOTES provide supporting details or warnings about common pitfalls. ORIGINS give biographical information or historical details about key figures and discoveries in the development of calculus.

ORIGINS Willard F. Libby (1908-1980) grew up in California and went to college and graduate school at UC Berkeley. Libby was a physical chemist who taught at the University of Chicago and later at UCLA. While at Chicago, he developed the methods for using natural carbon- 14 to date archaeological artifacts. Libby won the Nobel Prize in Chemistry in 1960 for this work.

5.1 Area

OBJECTIVES When you finish this section, you should be able to:
1 Approximate the area under the graph of a function (p. 2)
2 Find the area under the graph of a function (p. 6)

Learning Objectives Students often need focus. Each section begins with a set of Objectives that serve as a broad outline of the section. The objectives help students study effectively by focusing attention on the concepts being covered. Each learning objective is supported by appropriate definitions, theorems, and proofs. One or more carefully chosen examples enhance the learning objective, and where appropriate, an application example is also included.

Learning objectives help instructors prepare a syllabus that includes the important topics of calculus, and concentrate instruction on mastery of these topics. They are also helpful for answering the familiar question, "What is on the test?"

Effective Use of Color The text contains an abundance of graphs and illustrations that carefully utilize color to make concepts easier to visualize.

Dynamic Figures The text includes many pieces of art that students, can interact with through the online e-Book. These dynamic figures, indicated by the icon DF next to the figure label, illustrate select principles of calculus including limits, rates of change, solids of revolution, convergence, and divergence.

Figure 9 DF

Examples with Detailed and Annotated Solutions: Examples are named according to their purpose. The text includes hundreds of examples with detailed step-by-step solutions. Additional annotations provide students with the formula used, or the reasoning needed, to perform a particular step of the solution. Where procedural steps for solving a type of problem are given in the text, these steps are followed in the solved examples. Often a figure or a graph is included to complement the solution.

Application Examples and Chapter Projects The inclusion of application examples motivates and underscores the conceptual theory, and powerfully conveys the message that calculus is a beneficial and a relevant subject to master. It is this combination of concepts with applied examples and exercises that gives students the tools not only to complete the exercises successfully, but also to comprehend the mathematics behind them.

This message is further reinforced by the case studies that open each chapter, demonstrating how major concepts apply to recognizable and often contemporary situations in biology, environmental studies, astronomy, engineering, technology, and other fields. Students see this case study again at the end of the chapter, where an extended project presents questions that guide students through a solution to the situation.

Immediate Reinforcement of Skills Following most examples there is the statement, exercise from the section's problem set. Math is best learned actively. Doing a related problem immediately after working through a solved example not only keeps students engaged, but also enhances understanding and strengthens their ability to apply the objective. This practice also serves as a confidence-builder for students.

The Text Is Written with Ample Opportunity to Practice

Check Comprehension Before the Test Immediately after reading a section, we suggest that students assess their comprehension of the main points of the section by answering the Concepts and Vocabulary questions. These are a selection of quick fill in the blank, multiple-choice, and true/false questions. If a student has trouble answering these questions correctly, then a flag is raised immediately-go back and review the section or get help from the instructor.

Instructors may find Concept and Vocabulary problems useful for a class-opening, for a 5-minute quiz, or for iClicker responses to determine if students are prepared for class.

Skill Building

In Problems 5-18, find each derivative using Part 1 of the Fundamental Theorem of Calculus.

Applications and Extensions

51. Uninhibited Growth The population of a colony of
mosquitoes obeys the uninhibited growth equation $\frac{d N}{d t}=k N$. If there are 1500 mosquitoes initially, and there are 2500 mosquitoes after 24 h , what is the mosquito population after 3 days?

Practice, the Best Way to Learn Calculus The Skill Building exercises are grouped into subsets, usually corresponding to the objectives of the section, and are correlated to the solved examples. Working a variety of Skill Building problems increases students' computational skills and ability to choose the best approach to solve a problem. The result: Student success, which builds student confidence.

Challenge Problems

60. The floor function $f(x)=\lfloor x\rfloor$ is not continuous on $[0,4]$. Show that $\int_{0}^{4} f(x) d x$ exists.

Chapter Review

THINGS TO KNOW
5.1 Area

Definitions:

- Partition of an interval $[a, b]$ (p. 3)
- Area A under the graph of a function f from a to b (p. 6)

For students requiring more of a challenge, the Challenge Problems provide more difficult extensions of the section material. Often combined with concepts learned in previous chapters, Challenge Problems are intended to be thought-provoking problems that require some ingenuity to solve. They are designed to challenge the stronger students in the class.

Review, the Way to Reach Higher Levels of Learning Student success can be measured in many ways. Often in school student success is measured by a test. Recognizing this, each chapter, other than Chapter P, concludes with a Chapter Review. The review incorporates pedagogical features found in few advanced mathematics texts. Each Chapter Review consists of

- Things to Know, a detailed list of important definitions, formulas, and theorems contained in the chapter and page references to where they can be found.
- Objectives Table, which follows Things to Know. This table provides a section-by-section list of the learning objectives of the chapter (with page references), along with references to the worked examples and the review problems pertaining to the particular learning objective.

OBJECTIVES

- Review Problems that provide a comprehensive review of the key concepts of the chapter, matched to the learning objectives of each section.

By using the review exercises to study, a student can identify the objectives mastered and those that need additional work. By referring back to the objective(s) of problems missed, reviewing the material for that objective, reworking the NOW WORK Problem(s), and trying the review problem again, a student should have the skills and the confidence to take an exam or proceed to the next chapter.

Student success is ultimately measured by deep understanding and the ability to extend knowledge. When reviewing and incorporating previous knowledge, students begin to make connections. Once connections are formed, understanding and mastery follow.

In addition to these explicit pedagogical features, there are less obvious, but certainly no less significant, features that have been woven into the text. As educators and as students we realize that learning new material is often made more difficult when the style of presentation changes, so we have striven to keep the language and notation consistent throughout the book. Definitions are used in their entirety, both when presented and later when applied. This consistency is followed throughout the text and the exercises. Such attention to the consistency of language and notation is mirrored in our approach to writing precise mathematics while keeping the language clear and accessible to students.

The pedagogical features are tools that will aid students in their mastery of calculus. But it is the clarity of writing that allows students to master the understanding and to use the tools effectively. The accuracy of the mathematics and transparency in the writing will guarantee that any dedicated student can come to grips with the underlying theories, without having to decipher confusing dialogue.

It is our hope that you can encourage your students to read the textbook, use its features, practice the problems, and get help as soon as they need it. Our desire is that we, as a team, can build a cadre of confident and successful calculus students ready to pursue their dreams and goals!

Organizational Features That Set This Text Apart

Appendix A is a brief review of topics that students might have forgotten, but are used throughout calculus. The content of Appendix A consists of material studied prior to the introduction of functions in precalculus. Although definitions, theorems, and examples are provided in Appendix A, this appendix includes no exercises. The purpose of Appendix A is to refresh the student's memory of previously mastered concepts from prerequisite courses. You may wish to look at the content found in Appendix A. In particular, notice that summation notation, used in Chapter 5, is discussed in Section A. 5

Chapter P deals with functions encountered in precalculus. It is designed either to be a quickly covered refresher at the beginning of the course or to be a just-in-time review used when needed. As such, the sections of Chapter P are lean and include only a limited number of practice problems that reinforce the reviewed topics.

Chapter 1 is dedicated to limits and continuity. Although most of the chapter addresses the idea of a limit and methods of finding limits, we state the formal $\varepsilon-\delta$ definition of limit in Section 1. We also include an example that investigates how close x must be to c to ensure that the difference between $f(x)$ and L is less than some prescribed number. But it is not until Section 6, after students are comfortable with the concept of a limit, the procedures of finding limits, and properties of limits, that the $\varepsilon-\delta$ definition of limit is repeated, discussed, and applied.

The Derivative has been split into two chapters (Chapters 2 and 3). This allows us to expand the coverage of the derivative and avoid a chapter of unwieldy length. Chapter 2 includes rates of change, the derivative as a function, and the Sum, Difference, Product, Quotient, and Simple Power rules for finding derivatives. It also contains derivatives of the exponential function and the trigonometric functions.

Chapter 3 covers the Chain Rule, implicit differentiation, the derivative of logarithmic and hyperbolic functions, differentials and linear approximations, and the approximation of zeros of functions using Newton's method.

Notice that there is also a section on Taylor polynomials (Section 3.5). We feel that the logical place for Taylor polynomials is immediately after differentials and linear approximations. It is natural to ask, "If a linear approximation to a function f near $x=x_{0}$ is good in a small interval surrounding x_{0}, then does a higher degree polynomial provide a better approximation of a function f over a wider interval?"

We begin Chapter 6, by finding the volume of a solid of revolution using the disk and washer method, followed by the shell method. We use both methods to solve several examples. This parallel approach enhances the student's appreciation of which method to choose when asked to find a volume. Only then do we introduce the slicing method, which is a generalization of the disk and washer method.

In Chapter 8, students are asked to recall the Taylor Polynomials studied earlier. The early exposure to the Taylor Polynomials serves two purposes here: First, it distinguishes a Taylor Polynomial from a Taylor Series; and second, it helps to make the idea of convergence of a Taylor Series easier to understand.

In addition to Chapter 16, Differential Equations, we provide examples of differential equations throughout the text. They are first introduced in Chapter 4: Applications of the Derivative, along with antiderivatives (Section 4.8). Again, the placement is a logical consequence of the relationship between derivatives and antiderivatives. At this point the idea of boundary values is introduced. Differential equations are revisited a second time in Chapter 5, The Integral, with the discussion of exponential growth (Section 5.5) and Newton's Law of Cooling (Section 5.6).

Acknowledgments

Ensuring the mathematical rigor, accuracy, and precision, as well as the complete coverage and clear language that we have strived for with this text, requires not only a great deal of time and effort on our part, but also on the part of an entire team of exceptional reviewers. First and foremost, Tony Palermino has provided exceptional editorial advice throughout the long development process. Mark Grinshpon has been invaluable for his mathematical insights, analytical expertise, and sheer dedication to the project; without his contributions, the text would be greatly diminished. The following people have also provided immeasurable support reading drafts of chapters and offering insight and advice critical to the success of this textbook:

James Brandt, University of California, Davis
William Cook, Appalachian State University
Mark Grinshpon, Georgia State University
Karl Havlak, Angelo State University
Steven L. Kent, Youngstown State University

Stephen Kokoska, Bloomsburg University of Pennsylvania Larry Narici, St. Johns University Frank Purcell, Twin Prime Editorial William Rogge, University of Nebraska, Lincoln

In addition, we have had a host of individuals checking exercises at every stage of the text to ensure that they are accurate, interesting, and appropriate for a wide range of students:

Nick Belloit, Florida State College at Jacksonville
Jennifer Bowen, The College of Wooster
Brian Bradie, Christopher Newport University
James Bush, Waynesburg University
Deborah Carney, Colorado School of Mines
Julie Clark, Hollins University
Adam Coffman, Indiana University-Purdue University, Fort Wayne
Alain D'Amour, Southern Connecticut State University
John Davis, Baylor University
Amy H. Lin Erickson, Georgia Gwinnett College
Judy Fethe, Pellissippi State Community College
Tim Flaherty, Carnegie Mellon University
Melanie Fulton
Jeffery Groah, Lone Star College
Karl Havlak, Angelo State University
Donald Larson, Penn State Altoona
Peter Lampe, University of Wisconsin-Whitewater
Denise LeGrand, University of Arkansas, Little Rock
Serhiy Levkov and his team
Benjamin Levy, Wentworth Institute of Technology

Roger Lipsett, Brandeis University
Aihua Liu, Montclair State University
Joanne Lubben, Dakota Weslyan University
Betsy McCall, Columbus State Community College
Will Murray, California State University, Long Beach
Vivek Narayanan, Rochester Institute of Technology
Nicholas Ormes, University of Denver
Chihiro Oshima, Santa Fe College
Vadim Ponomarenko, San Diego State University
John Samons, Florida State College at Jacksonville
Ned Schillow, Carbon Community College
Andrew Shulman, University of Illinois at Chicago
Mark Smith, Miami University
Timothy Trenary, Regis University
Kiryl Tsishchanka and his team
Marie Vanisko, Carroll College
David Vinson, Pellissippi Community College
Bryan Wai-Kei, University of South Carolina, Salkehatchie
Lianwen Wang, University of Central Missouri
Kerry Wyckoff, Brigham Young University

Because the student is the ultimate beneficiary of this material, we would be remiss to neglect their input. We would like to thank students from the following schools who have provided us with feedback and suggestions for exercises throughout the text:

Barry University
California State University-Bakersfield
Catholic University
Colorado State University
Lamar University
Murray State University
North Park University
University of North Texas

```
University of South Florida
Southern Connecticut State
University
St. Norbert College
State University of West Georgia
Texas State University-San Marcos
Towson State University
University of Maryland
```

Aside from commenting on exercises, a number of the applied exercises in the text were contributed by students. Although we were not able to use all of the submissions, we would like to thank all of the students who took the time and effort to participate in this project:

Boston University
Bronx Community College

Idaho State University
Lander University

Minnesota State University
Millikin University
University of Missouri-St. Louis

University of North Georgia
Trine University
University of Wisconsin—River Falls

Additional applied exercises, as well as many of the case study and chapter projects that open and close each chapter of this text were contributed by a team of creative individuals. Wayne Anderson, in particular, authored applied problems for every chapter in the text and made himself available as a consultant at every request. We would like to thank all of our exercise contributors for their work on this vital and exciting component of the text:

Wayne Anderson, Sacramento City College (Physics)
Allison Arnold, University of Georgia (Mathematics)
Kevin Cooper, Washington State University (Mathematics)
Adam Graham-Squire, High Point University (Mathematics)
Sergiy Klymchuk, Auckland University of Technology (Mathematics)
Eric Mandell, Bowling Green State University (Physics and Astronomy)

Eric Martell, Millikin University (Physics and Astronomy)
Barry McQuarrie, University of Minnesota, Morris (Mathematics)
Rachel Renee Miller, Colorado School of Mines (Physics)
Kanwal Singh, Sarah Lawrence College (Physics)
John Travis, Mississippi College (Mathematics)
Gordon Van Citters, National Science Foundation

Additional contributions to the writing of this text came from William Cook of Appalachian State University, who contributed greatly to the parametric surfaces and surface integrals section of Chapter 15, and to John Mitchell of Clark College, who provided recommendations and material to help us better integrate technology into each chapter of the text.

We would like to thank the dozens of instructors who provided invaluable input as reviewers of the manuscript and exercises and focus groups participants throughout the development process:
Marwan A. Abu-Sawwa, University of North Florida
Jeongho Ahn, Arkansas State University
Martha Allen, Georgia College \& State University
Roger C. Alperin, San Jose State University
Weam M. Al-Tameemi, Texas A\&M International University
Robin Anderson, Southwestern Illinois College
Allison W. Arnold, University of Georgia
Mathai Augustine, Cleveland State Community College
Carroll Bandy, Texas State University
Scott E. Barnett, Henry Ford Community College
Emmanuel N. Barron, Loyola University Chicago
Abby Baumgardner, Blinn College, Bryan
Thomas Beatty, Florida Gulf State University
Robert W. Bell, Michigan State University
Nicholas G. Belloit, Florida State College at Jacksonville
Daniel Birmajer, Nazareth College of Rochester
Justin Bost, Rowan-Cabarrus Community College-South Campus
Laurie Boudreaux, Nicholls State University
Alain Bourget, California State University at Fullerton
David Boyd, Valdosta State University
Jim Brandt, Southern Utah University
Light R. Bryant, Arizona Western College
Kirby Bunas, Santa Rosa Junior College
Dietrich Burbulla, University of Toronto
Shawna M. Bynum, Napa Valley College
Joe Capalbo, Bryant University
Mindy Capaldi, Valparaiso University
Luca Capogna, University of Arkansas
Jenna P. Carpenter, Louisana Tech University
Nathan Carter, Bentley University
Vincent Castellana, Craven Community College
Stephen Chai, Miles College
E. William Chapin, Jr., University of Maryland, Eastern Shore

Sunil Kumar Chebolu, Illinois State University
William Cook, Appalachian State University
Sandy Cooper, Washington State University
David A. Cox, Amherst College
Mark Crawford, Waubonsee Community College

Charles N. Curtis, Missouri Southern State University
Larry W. Cusick, California State University, Fresno
Rajendra Dahal, Coastal Carolina University
Ernesto Diaz, Dominican University of California
Robert Diaz, Fullerton College
Geoffrey D. Dietz, Gannon University
Della Duncan-Schnell, California State University, Fresno
Deborah A. Eckhardt, St. Johns River State College
Karen Ernst, Hawkeye Community College
Mark Farag, Fairleigh Dickinson University
Kevin Farrell, Lyndon State College
Walden Freedman, Humboldt State University
Md Firozzaman, Arizona State University
Kseniya Fuhrman, Milwaukee School of Engineering
Douglas R. Furman, SUNY Ulster Community College
Tom Geil, Milwaukee Area Technical College
Jeff Gervasi, Porterville College
William T. Girton, Florida Institute of Technology
Darren Glass, Gettysburg College
Giséle Goldstein, University of Memphis
Jerome A. Goldstein, University of Memphis
Lourdes M. Gonzalez, Miami Dade College
Pavel Grinfield, Drexel University
Mark Grinshpon, Georgia State University
Jeffrey M. Groah, Lone Star College, Montgomery
Gary Grohs, Elgin Community College
Paul Gunnells, University of Massachusetts, Amherst
Semion Gutman, University of Oklahoma
Christopher Hammond, Connecticut College
James Handley, Montana Tech
Alexander L. Hanhart, New York University
Gregory Hartman, Virginia Military Institute
LaDawn Haws, California State University, Chico
Mary Beth Headlee, State College of Florida, Manatee-Sarasota
Janice Hector, DeAnza College
Anders O.F. Hendrickson, St. Norbert College
Shahryar Heydari, Piedmont College
Max Hibbs, Blinn College

Rita Hibschweiler, University of New Hampshire David Hobby, SUNY at New Paltz
Michael Holtfrerich, Glendale Community College
Keith E. Howard, Mercer University
Tracey Hoy, College of Lake County
Syed I. Hussain. Orange Coast College
Maiko Ishii, Dawson College
Nena Kabranski, Tarrent County College
William H. Kazez, The University of Georgia
Michael Keller, University of Tulsa
Eric S. Key, University of Wisconsin, Milwaukee
Raja Nicolas Khoury, Collin College
Michael Kirby, Colorado State University
Alex Kolesnik, Ventura College
Natalia Kouzniak, Simon Fraser University
Ashok Kumar, Valdosta State University
Geoffrey Laforte, University of West Florida
Tamara J. Lakins, Allegheny College
Justin Lambright, Anderson University
Carmen Latterell, University of Minnesota, Duluth
Glenn W. Ledder, University of Nebraska, Lincoln
Namyong Lee, Minnesota State University, Mankato
Aihua Li, Montclair State University
Rowan Lindley, Westchester Community College
Matthew Macauley, Clemson University
Filix Maisch, Oregon State University
Heath M. Martin, University of Central Florida
Vania Mascioni, Ball State University
Philip McCartney, Northern Kentucky University
Kate McGivney, Shippensburg University
Douglas B. Meade, University of South Carolina
Jie Miao, Arkansas State University
John Mitchell, Clark College
Val Mohanakumar, Hillsborough Community College
Catherine Moushon, Elgin Community College
Suzanne Mozdy, Salt Lake Community College
Gerald Mueller, Columbus State Community College
Kevin Nabb, Moraine Valley Community College
Bogdan G. Nita, Montclair State University
Charles Odion, Houston Community College
Giray Ökten, Florida State University
Kurt Overhiser, Valencia College
Edward W. Packel, Lake Forest College
Joshua Palmatier, SUNY College at Oneonta
Teresa Hales Peacock, Nash Community College
Chad Pierson, University of Minnesota, Duluth
Cynthia Piez, University of Idaho
Joni Burnette Pirnot, State College of Florida, Manatee-Sarasota

Jeffrey L. Poet, Missouri Western State University Shirley Pomeranz, The University of Tulsa
Elise Price, Tarrant County College, Southeast Campus Harald Proppe, Concordia University
Michael Radin, Rochester Institute of Technology
Jayakumar Ramanathan, Eastern Michigan University
Joel Rappaport, Florida State College at Jacksonville
Marc Renault, Shippensburg University
Suellen Robinson, North Shore Community College
William E. Rogge, University of Nebraska, Lincoln
Yongwu Rong, George Washington University
Amber Rosin, California State Polytechnic University
Richard J. Rossi, Montana Tech of the University of Montana
Bernard Rothman, Ramapo College of New Jersey
Dan Russow, Arizona Western College
Adnan H. Sabuwala, California State University, Fresno Alan Saleski, Loyola University Chicago
Brandon Samples, Georgia College \& State University
Jorge Sarmiento, County College of Morris
Ned Schillow, Lehigh Carbon Community College
Kristen R. Schreck, Moraine Valley Community College
Randy Scott, Santiago Canyon College
George F. Seelinger, Illinois State University
Rosa Garcia Seyfried, Harrisburg Area Community College
John Sumner, University of Tampa
Geraldine Taiani, Pace University
Barry A. Tesman, Dickinson College
Derrick Thacker, Northeast State Community College
Millicent P. Thomas, Northwest University
Tim Trenary, Regis University
Pamela Turner, Hutchinson Community College
Jen Tyne, University of Maine
David Unger, Southern Illinois University - Edwardsville
William Veczko, St. Johns River State College
James Vicknair, California State University, San Bernardino
Robert Vilardi, Troy University, Montgomery
Klaus Volpert, Villanova University
David Walnut, George Mason University
James Li-Ming Wang, University of Alabama
Jeffrey Xavier Watt, Indiana University-Purdue University Indianapolis
Qing Wang, Shepherd University
Rebecca Wong, West Valley College
Carolyn Yackel, Mercer University
Catalina Yang, Oxnard College
Yvonne Yaz, Milwaukee State College of Engineering
Hong Zhang, University of Wisconsin, Oshkosh
Qiao Zhang, Texas Christian University
Qing Zhang, University of Georgia

Finally, we would like to thank the editorial, production, and marketing teams at W. H. Freeman, whose support, knowledge, and hard work were instrumental in the publication of this text: Ruth Baruth, Terri Ward, Andrew Sylvester, and Jorge Amaral on the Editorial side; Julia DeRosa, Diana Blume, Robert Errera, Christine Buese, and Janice Donnola on the Project Management, Design, and Production teams; and Steve Rigolosi, Steve Thomas, and Stephanie Ellis on the Marketing and Market Development teams. Thanks as well to the diligent group at Cenveo, lead by VK Owpee, for their expert composition, and to Ron Weickart at Network Graphics for his skill and creativity in executing the art program.

Michael Sullivan
Kathleen Miranda

For Instructors

Instructor's Solutions Manual
Single Variable ISBN: 1-4641-4267-X
Multivariable ISBN: 1-4641-4266-1
Contains worked-out solutions to all exercises in the text.

Test Bank

Computerized (CD-ROM), ISBN: 1-4641-4272-6
Includes a comprehensive set of multiple-choice test items.

Instructor's Resource Manual

ISBN: 1-4641-8659-6
Provides sample course outlines, suggested class time, key points, lecture material, discussion topics, class activities, worksheets, projects, and questions to accompany the dynamic figures.

Instructor's Resource CD-ROM
ISBN: 1-4641-4274-2
Search and export all resources by key term or chapter. Includes text images, Instructor's Solutions Manual, Instructor's Resource Manual, and Test Bank.

For Students

Student Solutions Manual

Single Variable ISBN: 1-4641-4264-5
Multivariable ISBN: 1-4641-4265-3
Contains worked-out solutions to all odd-numbered exercises in the text.

Software Manuals

Maple ${ }^{\mathrm{TM}}$ and Mathematica ${ }^{\circledR}$ software manuals serve as basic introductions to popular mathematical software options.

ONLINE HOMEWORK OPTIONS

DLaunchPad

W. H. Freeman's new online homework system, LaunchPad, offers our quality content curated and organized for easy assignability in a simple but powerful interface. We've taken what we've learned from thousands of instructors and the hundreds of thousands of students to create a new generation of W. H. Freeman/Macmillan technology.

Curated Units collect and organize videos, homework sets, dynamic figures, and e-book content to give instructors a course foundation to use as-is, or as a building block for their own learning units. Thousands of algorithmic exercises (with full algorithmic solutions) from the text can be assigned as online homework. Entire units worth of material and homework can be assigned in seconds drastically saving the amount of time it takes to get a course up and running.
Easily customizable. Instructors can customize LaunchPad units by adding quizzes and other activities from our vast wealth of resources. Instructors can also add a discussion board, a dropbox, and RSS feed, with a few clicks, allowing instructors to customize the student experience as much or as little as they'd like.

Useful Analytics. The gradebook quickly and easily allows instructors to look up performance metrics for classes, individual students, and individual assignments.
Intuitive interface and design. The student experience is simplified. Students navigation options and expectations are clearly laid out at all times ensuring they can never get lost in the system.

Assets integrated into LaunchPad include:

- Interactive e-Book: Every LaunchPad e-Book comes with powerful study tools for students, video and multimedia content, and easy customization for instructors. Students can search, highlight, and bookmark, making it easier to study and access key content. And instructors can make sure their class gets just the book they want to deliver: customize and rearrange chapters, add and share notes and discussions, and link to quizzes, activities, and other resources.
- LEARNINGCurve LearningCurve provides students and instructors with powerful adaptive quizzing, a game-like format, direct links to the e-Book, and instant feedback. The quizzing system features questions tailored specifically to the text and adapts to students responses, providing material at different difficulty levels and topics based on student performance.
- Dynamic Figures: One hundred figures from the text have been recreated in a new interactive format for students and instructors to manipulate and explore, making the visual aspects and dimensions of calculus concepts easier to grasp. Brief tutorial videos accompany each figure and explain the concepts at work.
- CalcClips: These whiteboard tutorials provide animated and narrated step-by-step solutions to exercises that are based on key problems in the text.
- SolutionMaster The SolutionMaster tool offers an easy-to-use web-based version of the instructor's solutions, allowing instructors to generate a solution file for any set of homework exercises.

OTHER ONLINE HOMEWORK OPTIONS

WebAssign. Premium www.webassign.net/freeman.com

WebAssign Premium integrates the book's exercises into the world's most popular and trusted online homework system, making it easy to assign algorithmically generated homework and quizzes. Algorithmic exercises offer the instructor optional algorithmic solutions. WebAssign Premium also offers access to resources, including Dynamic Figures, CalcClips whiteboard videos, tutorials, and "Show My Work" feature. In addition, WebAssign Premium is available with a fully customizable e-Book option that includes links to interactive applets and projects.

WeBWorK webwork.maa.org

W. H. Freeman offers thousands of algorithmically generated questions (with full solutions) though this free, open-source online homework system at the University of Rochester. Adopters also have access to a shared national library test bank with thousands of additional questions, including 1,500 problem sets matched to the book's table of contents.

Applications Index

Note: Italics indicates Example.
Acoustics
Configuring microphones, 692
Sound level of a leafblower, 230
Vibrating strings, 839
Aerodynamics
Air resistance, 1072
Aeronautics
Direction of an airplane, 717
Paths of spacecraft, 743
Position of aircraft, 713
Speed and direction of aircraft, 703, 710, 722
Speed and direction of a bird, 722
Agriculture
Crop yields and fertilizer, 21, 281
Field enclosure, 898
Irrigation ditches, 889
Rate of a growing fruit on a tree, 153
Archaeology
Age of a fossil, 384
Amount of carbon left in ancient man found in ice, 386
Carbon dating of early human fossilized remains, 201
Architecture
Window design, 327
Concrete needed to build a cooling tower, 469
Area
of a sphere, 684
of an enclosed region, 678-681, 683-684, 692
Art
Rate of change in its value, 183
Astronomy
Brightness of stars, 844
Density of a star, 971
Escape speed, 1008
Event Horizon of a Black Hole, 262
Modeling an asteroid, 962
Motion of planets, 804
Orbit of a comet, 689
Orbit of Mercury, 689
Planetary orbit, 688, 804
Searching for exoplanets, 861
Biology
Air flowing through a windpipe, 271
Bacterial growth, 1071
Chemical flow through bodies, 874
Yeast biomass as function of time, 296
Business
Cost
of a box, 898
of manufacturing, $12,14,898$
of materials, $889,890,895$
of natural gas, 104
of production, 14
of removing pollutants from a lake, 128
postal rates per ounce, 80, 104
Manufacturing, 261, 886, 898
Maximizing profit, 887, 890, 898, 900-901
Minimizing cost, 901
Production of ball bearings, 234
Product production, 818, 857
Profit generated by unnamed technology, 296
Revenue of an unnamed commodity, 195
Sales, 153, 1069, 1071
Chemistry
Chemical reactions, 328
Crystals (structure of), 714, 698
Decomposition, 386
Decomposition reactions, 124, 129
Decrease of mass (glucose), 150
Energy within a system, 376
Growth of bacteria, 383, 385-386
Mixtures, 1087, 1096
Radioactive decay, 385, 386, 402, 1094
Salt solutions, 386
Communications
Rate of texting, 1071
Speed of a telephone call, 328
Computers
Graphics, 713
Construction
Minimizing cost, 327
of a box, 889
of a dam, 922
of a rain gutter, 270
of building a fence, 325
Supporting beam of a wall, 326
Decorating
Christmas lights, 249, 274
Demographics
Population growth, 253, 1087-1088, 1096
U.S. citizens, no High School diploma, 23
of a rare bird species, 535
Design
Maximizing plot of land, 325
of a cylinder, 898
of a play area, 320
Ski slope, 443
Distance
Between cities, 670
Height of a building, 238
of an unnamed object, 260, 282, 286, 487, 519, 535
Traveled by a bee, 238
Traveled by a dropped ball, 560, 564
Traveled by motorcycle, 342
Economics
Cobb-Douglas Model, 838, 898
Demand equations, 153, 183
Margin of productivity, 839
Market penetration of smartphones, 207
Mean earnings for workers 18 years and older, 207
Price of tablets, 220
Production rates of unnamed commodities, 220
Rate of productivity, 833
U.S. Budget, 297
U.S. Economy, 342

Education
Learning curve, 220
Student rating of faculty, 207
Test Scores, 80
Electricity
Current in RL circuit, 307
Density of a current in a wire, 184
Drop in voltage, 386
Electrical charge, 732, 818, 1088
Electrical current, 162
Electrical field, 398, 818, 874
Electrical potential, 818
Flow over a cylinder, 1037
Height of a cable, 274
Kirchhoff's Law, 1088
Magnetic effect on a TV, 1071
Magnetic fields, 818
Magnetism
of a cord, 733
of electrical charge, 732
of electrical current, 733
Parallel circuits, 848
Potential, 873, 874,
Rates of change for current, 177
Resistance, 207, 848, 860
Electronics
Circuitry, 1072
Energy stored in a capacitor, 552
How calculators calculate, 634

Energy

Nuclear chain reactions, 552
Solar, 878
Engineering
Amount of earth removed for a train to pass, 519
Bridges (St. Louis Arch), 249
Cable length, 444
Distribution of structural forces, 376
Electrical currents, 531
Electrical theory, 531
Length of hanging piece of rope, 444
Measuring ice depths, 901
River management, 403
Suspension, 246, 249
Wearing down of ball bearing, 233
Entertainment
Cable subscriptions, 326
Environment
Air quality, 1088
Disposal of pollutant, 143
Melting ice caps, 1096
Oil leakage, 261
Pollution in Gulf of Mexico, 1077
Farming
Field enclosure, 319
Finance
Consumer consumption, 564
Cost
of fuel, 273, 889
of health care, 412
of labor, 890
of mailing packages, 889
of mobile phone plans, 817
of natural gas, 92
of removing pollutant from a lake, 182
of water, 92, 104
Diminishing returns, 564
Flow of currency, 1088
Maximizing profits, 342
Present value of an unnamed currency, 531
Price of wine, 326
Projected business revenues, 191
Revenue maximization, 325
Sale of stereos, 342
Sales of an unnamed object, 293
Tax rates, 274
Force (Hydrostatic)
Gasoline in a tank, 456, 469
in a swimming pool, 456
in a trapezoid, 469
in a trough, 456
in a water tank, 469
on a dam, 456,469
on a floodgate, 456
on a submarine, 456
in an oil tank, 456
Resultant, 455-456
Forensic Sciences
Change in body temperature following death 398, 402
Geography
Longitude and latitude, 960
Geometry
Area
of a circle, $155,162,377$
of a disk, 238
of a rectangle, 260, 327, 342
of a triangle, 191, 469, 731, 847, 848
of an ellipse, 1011, 1055
enclosed by parabola, 970
of a parallelogram, 728, 731
Centroid, 1029
Cone volume, 327
Cube (volume of), 239, 252, 259
Cylinder (volume of), 238
Density of an unnamed object, 377
Dimensions of a box, 898
Dimensions of a rectangle, 322, 325
Equation of a line, 831, 860
Finding the center of a sphere, 962
Fractals, 564
Maximizing area of a triangle, 325
Parallelepiped (vectors), 714
Right triangle (area of), 352
of a river channel, 519
Snow ball (volume of), 260
Sphere (radius of), 260
Sphere (volume of), 238, 259
Surface area, 938, 940, 967, 968, 970,
1025-1026
of a balloon, 256, 260
of a bead, 661, 684
of a box, 818
of a catenoid, 660
of a circle, 970
of a cone, 660, 970
of a cylinder, 981, 989
of a dome, 940
of a helicoid, 1026
of a hemisphere, 940
of a horn, 660
of a paraboloid, 940, 970, 1056
of a plane, 939, 940
of a plug, 661, 684
of a pond, 519
of a searchlight reflector, 660
of a sphere, $260,660,939,941$
of a torus, 1024, 1026
of an unnamed solid, 658-659, 660, 682, 692
Tetrahedron (vectors), 714
Trapezoid (area of), 352
Triangle (area of), 260, 263, 327

Triangle (dimensions of), 260
Volume
of area removed from a sphere, 438
of a box, 898
of a circle drilled in sphere, 956
of a cone, 434, 438, 469, 1045
of a cube, 153
of a cylinder, $153,438,844,847,898$, 926, 947, 971
of a liquid, 922
of a mountain, 955
of a paraboloid, 926, 968, 970
of a parallelepiped, 732, 1045
of a pyramid, 435, 437
of a silo, 848
of a solid, 469, 901, 909, 911, 919 , 921, 923, 928, 929, 944, 948, 949, 953, 955, 959, 961, 968, 970
of a sphere, 162, 928, 961, 971
of a spherical cap, 962
of a tetrahedron, 922, 970
of a wedge removed from
a cylinder, 437
of an ellipsoid, 949, 970
of ice, 857
of intersecting pipes, 438, 956
of water in a bowl, 437
of water in a glass, 437
of water in a tank, 929
Health
Body mass index, 239
Human respiration rate, 153
Spread of an epidemic, 1085, 1087
Investment
Price of stocks, 564
Compound interest, 229
in CD's, 230
Mass
center of, 955, 961, 970
intersection of two rods, 955
of a cone, 1055
of a cube, 949
of a cylinder, 949, 955
of fluid, 1040
of a plane, 932
of a solid, $935,955,961$,
of a sphere, $955,959,961,1037$
of a square, 934
of a tetrahedron, 945, 949
of a triangle, 931, 934
of a washer, 935
of a wire, $980,988,989$
Medicine
Drug concentration, 183, 327, 361, 1071
Drug reaction, 531, 889
Radiation from x-rays, 338
Spread of a disease, 296, 564

Meteorology
Atmospheric pressure, 162, 207
Heat index, 817
Modeling a tornado, 1056
Temperature zones, 817
Military
Path of a falling bomb, 171
Miscellaneous
Area of ground illuminated by a light, 328
Baking a potato, 102
Carrying a pipe around a corner, 328
Density of an object, 848
Fashioning a metal box, 319
Human intelligence, 629
Man walking in relation to the height of a tower, 260
Maximizing carry-on luggage, 898
Maximizing the volume of a box, 325, 341
Metal detectors, 890
Minimizing distance between two numbers, 327
Minimizing the surface area of a box, 325
Optimal dimensions for a can, 327
Optimal viewing angle for art on a wall, 327
Optimal wire length, 327
Path between two homes, 326
Weight lifting, 731
Motion
of a ball, 23, 179, 182, 338, 794
of a bullet, 206
of a car, 207, 791
of a dropped rock, 338
of a golf ball, 794
of hailstones, 207
of a harmonic spring, 129
of a hydrogen atom, 795
of an elevator, 184
of the Lunar Module, 196
of ocean waves, 191
of a pendulum, $1,7,32,207,238,252$
of a person walking and jogging, 152
of a piston in an automobile, 209
of a projectile, 274, 444, 650, 800, 801, 872
of a rocket, 398, 1072
of a spring, 37
of a subway train, 152
of a thrown rock, 335
of a train, 646
of an unnamed object, 112, 115, 182, 191, 195, 206-207, 220, 338, 367
of a wave, 857
of a weight on a string, 189, 191, 208
of water down a hill, 873
Path of a satellite in orbit, 818

Navigation
Steering a boat, 722
Tracking an airplane, 262
Tracking a rocket, 261
Optics
Intensity of a light, 274
Light intensity, 327
Light passing through different materials, 324
Mirrors, 552
Photography
Camera distance calculation, 129, 239
Physics
Air resistance on a falling object, 398-399
Bodies in free fall, 341
Braking load, 722
Compressibility of gas, 220
Effect of elevation on weight, 238
Flow of liquid, 1034, 1035, 1036, 1037, 1056
Force
acting on a car, 807
acting on person in a car, 795
of an object dragged along the ground, 328
on an unnamed object, 518
needed to keep vehicle from skidding, 788, 794
Force fields, 1003, 1005, 1007, 1015, 1043
Frictional force, 1071
Gravitation/gravitational fields, 531, 818, 848, 874, 962, 977
Gravity (on Europa), 104
Harmonic motion, 274
Inertia, 338, 933, 935, 946, 949, 953, 954, 955, 961, 962, 970, 1015
Ideal Gas Law, 857
Kepler's Laws, 804, 807,
Newton's Law of Cooling, 1071
Newton's Law of Heating, 1071
Potential of gravity, 874
Potential of magnets, 531
Proton in a particle collider, 794
Repelling charged particles, 1007
Snell's Law, 848
Specific gravity of a sphere, 239
Speed of a thrown ball, 338
Speed of light, 629
Thermodynamics, 818, 838
Trajectory
of a baseball, 646
of a football, 646
Velocity
of a ball, 153
of a box sliding down an inclined plane, 341
of a circular disk, 208
of a falling object, 151
of a falling rock, $145,147,153$
of a liquid through a tube, 171
of a thrown object, 102
of an automobile, 153, 162
of an unnamed object, 170, 184, 328
Water pressure against the glass of an aquarium, 495
Work
done by a chain, 451
done by a pulled rope, 446
done by a pump, 448-449, 451-452,
done by an electrical charge, 452
done by gravity on an unwinding cable, 451
done by horse pulling plow, 732
done by unnamed force, 1055
done to pull ore from a mine, 469
done to raise an anchor, 469
needed to lift a bucket, 451-452
needed to lift a rocket off the
Earth, 452
needed to move a piston, 452
of an expanding gas, 452
pulling a cart, 713
pulling a wagon, 714,722
pulling crates, 723
pushing lawnmower, 721
Ramp, 722
Tension in a cable, 714
to lift an elevator, 451
Tug of war, 714
Using a wrench, 731
Population
Growth, 162, 183, 385-386, 402
of endangered bald eagles, 129
of insects, 128, 385
of the United States, 296
of wolves, 306
Stocking a lake with fish, 552, 564
Probability
Coin flips, 564
Production
of cylindrical containers, 321, 325
Rate
Blood flow through an artery, 171
Change in light intensity on surface, 183
Change in light intensity through sunglasses, 192
Change in luminosity of the Sun, 171, 238
Change in the inclination of a ladder as it slips from a wall, 260-261
Change of angle of mirror as it slips on a wood floor, 191
Change of density in a diver's body under water, 183

Change of gas pressure in a can, 183
Falling water level in cone, 260
of a baseball passing third base, 260
of a person rowing a boat, 326 of a person walking, 261
of a pile of sand increasing, 260
of a rumor spreading, 1087, 1096
of a turning searchlight, 262
of an unnamed object, 333
of change in a melting snowball, 340
of change in the angle of a rising balloon, 262
of corporate sales, 361, 367
of flowing water, 1072, 1081
of gas pressure changing, 261
of heated metal plate expansion, 261
of helium leaking from a balloon, 367
of miles per gallon, 326
of string being pulled by a kite, 261
of water being added to a reservoir, 367
of water released from a dam, 402
of weight change of an unnamed object
in outer space, 262
Water leaking out of a pool, 171
Speed
Kinetic energy of an object approaching the speed of light, 130
of an aircraft, 105, 340, 713, 714
of a boat approaching a pier, 258
of a car $278,282,338,377$
of a child's lengthening shadow, 261
of a decelerating car, 334, 338
of a downhill skier, 338
of a falcon moving away from its trainer, 261
of a person in a parachute, 1080
of a person riding a Ferris wheel, 261
of a rising container pulled by a pulley, 261
of a rotating lighthouse beacon, 340
of a shadow moving along a dome, 262
of a shadow moving along a wall, 263
of a skydiver, 306, 1087
of a train, 263
of a truck, 274
of a turning police searchlight, 262
of an unnamed object, 367, 377-378,
713, 730, 731, 1087
of elevator and delivery truck moving
away from one another, 261
of engine pistons, 262
of falling hailstones, 129
of Mars orbiter, 794
of moving radar beam, 261
of rotation of lighthouse beacon, 259, 261
of satellite in orbit, 788
of sound, 839
of two vehicles moving towards one another, 261
of wind, 714
Sports
Baseball (bat's center of mass), 465
Baseball (ERA), 817
Basketball (field goal percentage), 817
Golf (motion of a ball), 274
Golf (radius of water ripple if ball lands in a pond), 255
High jump on the Moon, 338
Mountaineering, 874
Races, 564
Swimming, 700, 722

Temperature
Along an unnamed point, 818
Boyle's Law, 860
Change in, 397, 832, 873, 874
Cooling time of a non-specific object, 128
Cooling time of a pie, 398
Distribution, 838, 839
Kinetic energy of gas, 92
of a metal plate, $868,872,900$
of a rod, 376
of a sphere, 898
of an unnamed object, 395
Readings on a thermometer, 398
Volume
Change in volume of an open box, 262
of a ball, 239
of a balloon, 238
of a paper cup, 238
of a rain gutter, 327
of a tree trunk cut into logs, 513
of a trough, 327
of an unnamed revolving solid object, 478-479, 487, 495, 507, 519, 526, 531, 535
of expanding gas, 518
of gasoline in a tank, 3
of liquid in a cone, 20
of motor oil in a pan, 239
of water in a reservoir, 519
Rising water level in a cone, 260
Rising water level in a swimming pool, 257, 260
Rising water level in a tank, 260
Weather
Rainfall measurement, 376

Preparing for Calculus

P. 1 Functions and Their Graphs
P. 2 Library of Functions; Mathematical Modeling

P. 3 Operations on Functions; Graphing Techniques

P. 4 Inverse Functions
P. 5 Exponential and Logarithmic Functions
P. 6 Trigonometric Functions
P. 7 Inverse Trigonometric Functions
P. 8 Technology Used in Calculus

Until now, the mathematics you have encountered has centered mainly on algebra, geometry, and trigonometry. These subjects have a long history, well over 2000 years. But calculus is relatively new; it was developed less than 400 years ago.

Calculus deals with change and how the change in one quantity affects other quantities. Fundamental to these ideas are functions and their properties.

In Chapter P, we discuss many of the functions used in calculus. We also provide a review of techniques from precalculus used to obtain the graphs of functions and to transform known functions into new functions.

Your instructor may choose to cover all or part of the chapter. Regardless, throughout the text, you will see the NEED TO REVIEW? marginal notes. They reference specific topics, often discussed in Chapter P.

P. 1 Functions and Their Graphs

OBJECTIVES When you finish this section, you should be able to:

1 Evaluate a function (p.3)
2 Find the domain of a function (p. 4)
3 Identify the graph of a function (p. 5)
4 Analyze a piecewise-defined function (p. 7)
5 Obtain information from or about the graph of a function (p. 7)
6 Use properties of functions (p.9)
7 Find the average rate of change of a function (p. 11)

Figure 1

TABLE 1

Time, \boldsymbol{x} (in seconds)	Altitude, \boldsymbol{y} (in meters)
0	20
1	19.2
2	16.8
2.5	15
3	12.8
4	7.2
5	0

NOTE Not every relation is a function. If any element x in the set X corresponds to more than one element y in the set Y, then the relation is not a function.

Often there are situations where one variable is somehow linked to another variable. For example, the price of a gallon of gas is linked to the price of a barrel of oil. A person can be associated to her telephone number(s). The volume V of a sphere depends on its radius R. The force F exerted by an object corresponds to its acceleration a. These are examples of a relation, a correspondence between two sets called the domain and the range. If x is an element of the domain and y is an element of the range, and if a relation exists from x to y, then we say that y corresponds to x or that y depends on x, and we write $x \rightarrow y$. It is often helpful to think of x as the input and y as the output of the relation. See Figure 1.

Suppose an astronaut standing on the moon throws a rock 20 meters up and starts a stopwatch as the rock begins to fall back down. If x represents the number of seconds on the stopwatch and if y represents the altitude of the rock at that time, then there is a relation between time x and altitude y. If the altitude of the rock is measured at $x=1$, $2,2.5,3,4$, and 5 seconds, then the altitude is approximately $y=19.2,16.8,15,12.8$, 7.2 , and 0 meters, respectively.

The astronaut could express this relation numerically, graphically, or algebraically. The relation can be expressed by a table of numbers (see Table 1) or by the set of ordered pairs $\{(0,20),(1,19.2),(2,16.8),(2.5,15),(3,12.8),(4,7.2),(5,0)\}$, where the first element of each pair denotes the time x and the second element denotes the altitude y. The relation also can be expressed visually, using either a graph, as in Figure 2, or a map, as in Figure 3. Finally, the relation can be expressed algebraically using the formula

$$
y=20-0.8 x^{2}
$$

Figure 2

Figure 3

In this example, notice that if X is the set of times from 0 to 5 seconds and Y is the set of altitudes from 0 to 20 meters, then each element of X corresponds to one and only one element of Y. Each given time value yields a unique, that is, exactly one, altitude value. Any relation with this property is called a function from X into Y.

Figure 4

Figure 5

DEFINITION Function

Let X and Y be two nonempty sets.* A function f from X into Y is a relation that associates with each element of X exactly one element of Y.

The set X is called the domain of the function. For each element x in X, the corresponding element y in Y is called the value of the function at x, or the image of x. The set of all the images of the elements in the domain is called the range of the function. Since there may be elements in Y that are not images of any x in X, the range of a function is a subset of Y. See Figure 4.

1 Evaluate a Function

Functions are often denoted by letters such as f, F, g, and so on. If f is a function, then for each element x in the domain, the corresponding image in the range is denoted by the symbol $f(x)$, read " f of x." $f(x)$ is called the value of f at x. The variable x is called the independent variable or the argument because it can be assigned any element from the domain, while the variable y is called the dependent variable, because its value depends on x.

EXAMPLE 1 Evaluating a Function

For the function f defined by $f(x)=2 x^{2}-3 x$, find:
(a) $f(5)$
(b) $f(x+h)$
(c) $f(x+h)-f(x)$
(d) $\frac{f(x+h)-f(x)}{h}, h \neq 0$

Solution (a) $f(5)=2(5)^{2}-3(5)=50-15=35$
(b) The function $f(x)=2 x^{2}-3 x$ gives us a rule to follow. To find $f(x+h)$, expand $(x+h)^{2}$, multiply the result by 2 , and then subtract the product of 3 and $(x+h)$.

$$
f(x+h) \underset{\uparrow}{=} 2(x+h)^{2}-3(x+h)=2\left(x^{2}+2 h x+h^{2}\right)-3 x-3 h
$$

In $f(x)$ replace x by $x+h$

$$
=2 x^{2}+4 h x+2 h^{2}-3 x-3 h
$$

(c) $f(x+h)-f(x)=\left[2 x^{2}+4 h x+2 h^{2}-3 x-3 h\right]-\left[2 x^{2}-3 x\right]=4 h x+2 h^{2}-3 h$
(d) $\frac{f(x+h)-f(x)}{h}=\frac{4 h x+2 h^{2}-3 h}{h}=\frac{h[4 x+2 h-3]}{h} \underset{\substack{\uparrow \\ h \neq 0 \text {; divide out } h}}{=} 4 x+2 h-3$

The expression in (d) is called the difference quotient of f. Difference quotients occur frequently in calculus, as we will see in Chapters 2 and 3.

NOW WORK Problems 13 and 23.

EXAMPLE 2 Finding the Amount of Gasoline in a Tank

A Shell station stores its gasoline in an underground tank that is a right circular cylinder lying on its side. The volume V of gasoline in the tank (in gallons) is given by the formula

$$
V(h)=40 h^{2} \sqrt{\frac{96}{h}-0.608}
$$

where h is the height (in inches) of the gasoline as measured on a depth stick. See Figure 5.
*The sets X and Y will usually be sets of real numbers, defining a real function. The two sets could also be sets of complex numbers, defining a complex function, or X could be a set of real numbers and Y a set of vectors, defining a vector-valued function. In the broad definition, X and Y can be any two sets.
(a) If $h=12$ inches, how many gallons of gasoline are in the tank?
(b) If $h=1$ inch, how many gallons of gasoline are in the tank?

Solution (a) We evaluate V when $h=12$.

$$
V(12)=40(12)^{2} \sqrt{\frac{96}{12}-0.608}=40 \cdot 144 \sqrt{8-0.608}=5760 \sqrt{7.392} \approx 15,660
$$

There are about 15,660 gallons of gasoline in the tank when the height of the gasoline in the tank is 12 inches.
(b) Evaluate V when $h=1$.

$$
V(1)=40(1)^{2} \sqrt{\frac{96}{1}-0.608}=40 \sqrt{96-0.608}=40 \sqrt{95.392} \approx 391
$$

There are about 391 gallons of gasoline in the tank when the height of the gasoline in the tank is 1 inch.

Implicit Form of a Function

In general, a function f defined by an equation in x and y is said to be given implicitly. If it is possible to solve the equation for y in terms of x, then we write $y=f(x)$ and say the function is given explicitly. For example,

$$
\begin{array}{cl}
\text { Implicit Form } & \text { Explicit Form } \\
x^{2}-y=6 & y=f(x)=x^{2}-6 \\
x y=4 & y=g(x)=\frac{4}{x}
\end{array}
$$

2 Find the Domain of a Function

In applications, the domain of a function is sometimes specified. For example, we might be interested in the population of a city from 1990 to 2012. The domain of the function is time, in years, and is restricted to the interval [1990, 2012]. Other times the domain is restricted by the context of the function itself. For example, the volume V of a sphere, given by the function $V=\frac{4}{3} \pi R^{3}$, makes sense only if the radius R is greater than 0 . But often the domain of a function f is not specified; only the formula defining the function is given. In such cases, the domain of f is the largest set of real numbers for which the value $f(x)$ is defined and is a real number.

EXAMPLE 3 Finding the Domain of a Function

Find the domain of each of the following functions:
(a) $f(x)=x^{2}+5 x$
(b) $g(x)=\frac{3 x}{x^{2}-4}$
(c) $h(t)=\sqrt{4-3 t}$
(d) $F(u)=\frac{5 u}{\sqrt{u^{2}-1}}$

Solution (a) Since $f(x)=x^{2}+5 x$ is defined for any real number x, the domain of f is the set of all real numbers.
(b) Since division by zero is not defined, $x^{2}-4$ cannot be 0 , that is, $x \neq-2$ and $x \neq 2$. The function $g(x)=\frac{3 x}{x^{2}-4}$ is defined for any real number except $x=-2$ and $x=2$. So, the domain of g is the set of real numbers $\{x \mid x \neq-2, x \neq 2\}$.
(c) Since the square root of a negative number is not a real number, the value of $4-3 t$ must be nonnegative. The solution of the inequality $4-3 t \geq 0$ is $t \leq \frac{4}{3}$, so the domain of h is the set of real numbers $\left\{t \left\lvert\, t \leq \frac{4}{3}\right.\right\}$ or the interval $\left(-\infty, \frac{4}{3}\right]$.

NEED TO REVIEW? Interval notation is discussed in Appendix A.1, p. A-5.

NEED TO REVIEW? The graph of an equation is discussed in Appendix A.3, pp. A-16 to A-20.
(d) Since the square root is in the denominator, the value of $u^{2}-1$ must be not only nonnegative, it also cannot equal zero. That is, $u^{2}-1>0$. The solution of the inequality $u^{2}-1>0$ is the set of real numbers $\{u \mid u<-1\} \cup\{u \mid u>1\}$ or the set $(-\infty,-1) \cup(1, \infty)$.

If x is in the domain of a function f, we say that f is defined at x, or $f(x)$ exists. If x is not in the domain of f, we say that f is not defined at x, or $f(x)$ does not exist. The domain of a function is expressed using inequalities, interval notation, set notation, or words, whichever is most convenient. Notice the various ways the domain was expressed in the solution to Example 3.

NOW WORK Problem 17.

3 Identify the Graph of a Function

In applications, often a graph reveals the relationship between two variables more clearly than an equation. For example, Table 2 shows the average price of gasoline at a particular gas station in Texas (for the years 1980-2012 adjusted for inflation, based on 2008 dollars). If we plot these data and then connect the points, we obtain Figure 6.

TABLE 2

Year	Price	Year	Price	Year	Price
1980	3.41	1991	1.90	2002	1.86
1981	3.26	1992	1.82	2003	1.79
1982	3.15	1993	1.70	2004	2.13
1983	2.51	1994	1.85	2005	2.60
1984	2.51	1995	1.68	2006	2.62
1985	2.46	1996	1.87	2007	3.29
1986	1.63	1997	1.65	2008	2.10
1987	1.90	1998	1.50	2009	2.45
1988	1.77	1999	1.73	2010	2.97
1989	1.83	2000	1.85	2011	3.80
1990	2.25	2001	1.40	2012	3.91

Source: http://www.randomuseless.info/gasprice/gasprice.html

Average retail price of gasoline (2008 dollars)

Source: http://www.randomuseless.info/gasprice/gasprice.html
Figure 6
The graph shows that for each date on the horizontal axis there is only one price on the vertical axis. So, the graph represents a function, although the rule for determining the price from the year is not given.

When a function is defined by an equation in x and y, the graph of the function is the set of points (x, y) in the $x y$-plane that satisfy the equation.

NOTE The phrase "if and only if" means the concepts on each side of the phrase are equivalent. That is, they have the same meaning.

But not every collection of points in the $x y$-plane represents the graph of a function. Recall that a relation is a function only if each element x in the domain corresponds to exactly one image y in the range. This means the graph of a function never contains two points with the same x-coordinate and different y-coordinates. Compare the graphs in Figures 7 and 8. In Figure 7 every number x is associated with exactly one number y, but in Figure 8 some numbers x are associated with three numbers y. Figure 7 shows the graph of a function; Figure 8 shows a graph that is not the graph of a function.

Figure 7 Function: Exactly one y for each x. Every vertical line intersects the graph in at most one point.

Figure 8 Not a function: $x=c$ has $3 y$'s associated with it. The vertical line $x=c$ intersects the graph in three points.

For a graph to be a graph of a function, it must satisfy the Vertical-line Test.

THEOREM Vertical-line Test

A set of points in the $x y$-plane is the graph of a function if and only if every vertical line intersects the graph in at most one point.

EXAMPLE 4 Identifying the Graph of a Function

Which graphs in Figure 9 represent the graph of a function?

Figure 9

Solution The graphs in Figure 9(a), 9(b), and 9(e) are graphs of functions because every vertical line intersects each graph in at most one point. The graphs in Figure 9(c) and 9 (d) are not graphs of functions, because there is a vertical line that intersects each graph in more than one point.

NOW WORK Problems 31(a) and (b).

Notice that although the graph in Figure 9(e) represents a function, it looks different from the graphs in (a) and (b). The graph consists of two pieces plus a point and they are not connected. Also notice that different equations describe different pieces of the graph. Functions with graphs similar to the one in Figure 9(e) are called piecewise-defined functions.

Figure $10 f(x)=|x|$

RECALL x-intercepts are numbers on the x-axis at which a graph touches or crosses the x-axis.

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
10 & \text { if } 0 \leq x \leq 100 \\
0.2 x-10 & \text { if } x>100
\end{array}\right.
$$

Figure 11

Figure 12

4 Analyze a Piecewise-Defined Function

Sometimes a function is defined differently on different parts of its domain. For example, the absolute value function $f(x)=|x|$ is actually defined by two equations: $f(x)=x$ if $x \geq 0$ and $f(x)=-x$ if $x<0$. These equations are usually combined into one expression as

$$
f(x)=|x|=\left\{\begin{array}{ccc}
x & \text { if } & x \geq 0 \\
-x & \text { if } & x<0
\end{array}\right.
$$

Figure 10 shows the graph of the absolute value function. Notice that the graph of f satisfies the Vertical-line Test.

When a function is defined by different equations on different parts of its domain, it is called a piecewise-defined function.

EXAMPLE 5 Analyzing a Piecewise-Defined Function

The function f is defined as

$$
f(x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
10 & \text { if } 0 \leq x \leq 100 \\
0.2 x-10 & \text { if } x>100
\end{array}\right.
$$

(a) Evaluate $f(-1), f(100)$, and $f(200)$.
(b) Graph f.
(c) Find the domain, range, and the x - and y-intercepts of f.

Solution (a) $f(-1)=0 ; f(100)=10 ; f(200)=0.2(200)-10=30$
(b) The graph of f consists of three pieces corresponding to each equation in the definition. The graph is the horizontal line $y=0$ on the interval $(-\infty, 0)$, the horizontal line $y=10$ on the interval $[0,100]$, and the line $y=0.2 x-10$ on the interval $(100, \infty)$, as shown in Figure 11.
(c) f is a piecewise-defined function. Look at the values that x can take on: $x<0$, $0 \leq x \leq 100, x>100$. We conclude the domain of f is all real numbers. The range of f is the number 0 and all real numbers greater than or equal to 10 . The x-intercepts are all the numbers in the interval $(-\infty, 0)$; the y-intercept is 10 .

NOW WORK Problem 33.

5 Obtain Information from or about the Graph of a Function

The graph of a function provides a great deal of information about the function. Reading and interpreting graphs is an essential skill for calculus.

EXAMPLE 6 Obtaining Information from the Graph of a Function

The graph of $y=f(x)$ is given in Figure 12. (x might represent time and y might represent the distance of the bob of a pendulum from its at-rest position. Negative values of y would indicate that the bob is to the left of its at-rest position; positive values of y would mean that the bob is to the right of its at-rest position.)
(a) What are $f(0), f\left(\frac{3 \pi}{2}\right)$, and $f(3 \pi)$?
(b) What is the domain of f ?
(c) What is the range of f ?
(d) List the intercepts of the graph.
(e) How many times does the line $y=2$ intersect the graph of f ?
(f) For what values of x does $f(x)=-4$?
(g) For what values of x is $f(x)>0$?

RECALL Intercepts are points at which a graph crosses or touches a coordinate axis.

Solution (a) Since the point $(0,4)$ is on the graph of f, the y-coordinate 4 is the value of f at 0 ; that is, $f(0)=4$. Similarly, when $x=\frac{3 \pi}{2}$, then $y=0$, so $f\left(\frac{3 \pi}{2}\right)=0$, and when $x=3 \pi$, then $y=-4$, so $f(3 \pi)=-4$.
(b) The points on the graph of f have x-coordinates between 0 and 4π inclusive. The domain of f is $\{x \mid 0 \leq x \leq 4 \pi\}$ or the closed interval [$0,4 \pi$].
(c) Every point on the graph of f has a y-coordinate between -4 and 4 inclusive. The range of f is $\{y \mid-4 \leq y \leq 4\}$ or the closed interval $[-4,4]$.
(d) The intercepts of the graph of f are $(0,4),\left(\frac{\pi}{2}, 0\right),\left(\frac{3 \pi}{2}, 0\right),\left(\frac{5 \pi}{2}, 0\right)$, and $\left(\frac{7 \pi}{2}, 0\right)$.
(e) Draw the graph of the line $y=2$ on the same set of coordinate axes as the graph of f. The line intersects the graph of f four times.
(f) Find points on the graph of f for which $y=f(x)=-4$; there are two such points: $(\pi,-4)$ and $(3 \pi,-4)$. So $f(x)=-4$ when $x=\pi$ and when $x=3 \pi$.
(g) $f(x)>0$ when the y-coordinate of a point (x, y) on the graph of f is positive. This occurs when x is in the set $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right) \cup\left(\frac{7 \pi}{2}, 4 \pi\right]$.

NOW WORK Problems 37, 39, 41, 43, 45, 47, and 49.

EXAMPLE 7 Obtaining Information about the Graph of a Function

Consider the function $f(x)=\frac{x+1}{x+2}$.
(a) What is the domain of f ?
(b) Is the point $\left(1, \frac{1}{2}\right)$ on the graph of f ?
(c) If $x=2$, what is $f(x)$? What is the corresponding point on the graph of f ?
(d) If $f(x)=2$, what is x ? What is the corresponding point on the graph of f ?
(e) What are the x-intercepts of the graph of f (if any)? What point(s) on the graph of f correspond(s) to the x-intercept(s)?

Solution (a) The domain of f consists of all real numbers except -2 ; that is, the set $\{x \mid x \neq-2\}$.
(b) When $x=1$, then $f(1) \underset{\uparrow}{=} \frac{1+1}{1+2}=\frac{2}{3}$. The point $\left(1, \frac{2}{3}\right)$ is on the graph of f; the point $\left(1, \frac{1}{2}\right)$ is not on the graph of f.
(c) If $x=2$, then $f(2)=\frac{2+1}{2+2}=\frac{3}{4}$. The point $\left(2, \frac{3}{4}\right)$ is on the graph of f.

$$
x=2
$$

(d) If $f(x)=2$, then $\frac{x+1}{x+2}=2$. Solving for x, we find

$$
\begin{aligned}
x+1 & =2(x+2)=2 x+4 \\
x & =-3
\end{aligned}
$$

The point $(-3,2)$ is on the graph of f.
(e) The x-intercepts of the graph of f occur when $y=0$. That is, they are the solutions of the equation $f(x)=0$. The x-intercepts are also called the real zeros or roots of the function f.

Figure $13 f(x)=\frac{x+1}{x-2}$

NEED TO REVIEW? Symmetry of equations is discussed in Appendix A.3, pp. A-17 to A-18.

The real zeros of the function $f(x)=\frac{x+1}{x+2}$ satisfy the equation $x+1=0$ or $x=-1$. The only x-intercept is -1 , so the point $(-1,0)$ is on the graph of f.

Figure 13 shows the graph of f.
NOW WORK Problems 55, 57, 59.

6 Use Properties of Functions

One of the goals of calculus is to develop techniques for graphing functions. Here we review some properties of functions that help obtain the graph of a function.

DEFINITION Even and Odd Functions

A function f is even if, for every number x in its domain, the number $-x$ is also in the domain and

$$
f(-x)=f(x)
$$

A function f is odd if, for every number x in its domain, the number $-x$ is also in the domain and

$$
f(-x)=-f(x)
$$

For example, $f(x)=x^{2}$ is an even function since

$$
f(-x)=(-x)^{2}=x^{2}=f(x)
$$

Also, $g(x)=x^{3}$ is an odd function since

$$
g(-x)=(-x)^{3}=-x^{3}=-g(x)
$$

See Figure 14 for the graph of $f(x)=x^{2}$ and Figure 15 for the graph of $g(x)=x^{3}$. Notice that the graph of the even function $f(x)=x^{2}$ is symmetric with respect to the y-axis and the graph of the odd function $g(x)=x^{3}$ is symmetric with respect to the origin.

Figure 14 The function $f(x)=x^{2}$ is even. The graph of f is symmetric with respect to the y-axis.

Figure 15 The function $g(x)=x^{3}$ is odd. The graph of g is symmetric with respect to the origin.

THEOREM Graphs of Even and Odd Functions

- A function is even if and only if its graph is symmetric with respect to the y-axis.
- A function is odd if and only if its graph is symmetric with respect to the origin.

EXAMPLE 8 Identifying Even and Odd Functions

Determine whether each of the following functions is even, odd, or neither. Then determine whether its graph is symmetric with respect to the y-axis, the origin, or neither.
(a) $f(x)=x^{2}-5$
(b) $g(x)=\frac{4 x}{x^{2}-5}$
(c) $h(x)=\sqrt[3]{5 x^{3}-1}$
(d) $F(x)=|x|$
(e) $H(x)=\frac{x^{2}+2 x-1}{(x-5)^{2}}$

[^0]: * Beckmann, P. (1976). A History of π (3rd. ed., p. 64). New York: St. Martin’s Press.

